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Abstract

Egocentric video recognition is a natural testbed for diverse
interaction reasoning. Due to the large action vocabulary in
egocentric video datasets, recent studies usually utilize a two-
branch structure for action recognition, i.e., one branch for
verb classification and the other branch for noun classifica-
tion. However, correlation study between the verb and the
noun branches have been largely ignored. Besides, the two
branches fail to exploit local features due to the absence of
position-aware attention mechanism. In this paper, we pro-
pose a novel Symbiotic Attention framework leveraging Priv-
ileged information (SAP) for egocentric video recognition.
Finer position-aware object detection features can facilitate
the understanding of actor’s interaction with the object. We
introduce these features in action recognition and regard them
as privileged information. Our framework enables mutual
communication among the verb branch, the noun branch, and
the privileged information. This communication process not
only injects local details into global features, but also ex-
ploits implicit guidance about the spatio-temporal position of
an on-going action. We introduce a novel symbiotic attention
(SA) to enable effective communication. It first normalizes
the detection guided features on one branch to underline the
action-relevant information from the other branch. SA adap-
tively enhances the interactions among the three sources. To
further catalyze this communication, spatial relations are un-
covered for the selection of most action-relevant information.
It identifies the most valuable and discriminative feature for
classification. We validate the effectiveness of our SAP quan-
titatively and qualitatively. Notably, it achieves the state-of-
the-art on two large-scale egocentric video datasets.

Introduction
We have witnessed a significant progress in tackling
many computer vision problems, e.g., image classifica-
tion (Krizhevsky, Sutskever, and Hinton 2012; He et al.
2016; Huang et al. 2017), detection (Girshick et al. 2014;
Girshick 2015; Ren et al. 2015; He et al. 2017), segmenta-
tion (Long, Shelhamer, and Darrell 2015; Chen et al. 2017;
He et al. 2017). In video analysis, with the emerging of
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Figure 1: Three sources of information are leveraged. The
VerbNet extracts motion information from raw videos, while
background noise possibly degrades the recognition of tar-
get action. The NounNet recognizes the object in the scene.
However, distracting objects interfere with accurate noun
classification. Local position-aware object detection features
serves as privileged information to enhance the communica-
tion between two branches.

deep convolutional neural networks and large-scale datasets,
the action recognition performance has been prominently
boosted (Simonyan and Zisserman 2014; Tran et al. 2015;
Zhu et al. 2018; Wang et al. 2016; Xie et al. 2018; Wu et al.
2019b). In typical action recognition datasets (Carreira and
Zisserman 2017; Goyal et al. 2017), the video duration is
usually less than 10 seconds. These trimmed videos contain
a single action that dominates the whole clip. As the back-
ground environment is not distracting, it is often not nec-
essary to identify the interacting object. However, in many
real-world applications, e.g., a robot navigates in the mall,
the surroundings are noisy with multiple actors and objects.

Human action recognition in videos has evolved from



classifying a single action in a clear background to un-
derstanding complex human-object interactions in a highly
distracting environment. To enable the recognition of
more complex videos, a challenging large-scale first-person
dataset, i.e., EPIC-Kitchens (Damen et al. 2018), was re-
cently introduced for egocentric daily human activities un-
derstanding. This dataset provides rich interactions, cover-
ing adequate objects and natural actions. Compared to third-
person action recognition, it requires to distinguish the ob-
ject that human is interacting with from various small dis-
tracting objects. The intense camera motion, occlusion, and
first-person viewpoint make it even more challenging to rec-
ognize fine actions.

In EPIC-Kitchens, due to the large action vocabulary, The
verb and the noun classifiers are usually trained separately.
The verb branch focuses on classifying verbs, e.g., put, open,
that the actor is performing. Large camera motion and sub-
tle occurring action positions are the main obstacles for verb
classification. The noun branch is to classify the object the
actor is interacting with. As shown in Figure 1, distracting
objects in oblique view decrease the prediction score of the
interacting object. The predictions from the two branches are
usually merged without interactions for action classification.
(Wu et al. 2019a) utilized 3D convolution neural networks
(CNN) for the standalone verb and noun classification. They
leverage object detection features for longer context model-
ing. However, the long-term feature bank is aggregated via
a simple max pooling or average pooling operation, while
the more sophisticated non-local operator is found not very
effective. (Baradel et al. 2018) introduced object relation
network for high-level object reasoning, where the relation
modeling facilitates object recognition. However, due to the
existence of distracting objects, the learned object related-
ness without guided supervision might be not useful to iden-
tify the object that human is interacting with. These works
ignore the mutual communication between the standalone
branches. Instead, they only focus on contextual modeling
and relation reasoning on a single branch. Even for a human,
it can be difficult to recognize an action by only looking at
objects while ignoring the actor’s intention, or only under-
standing motion changes without the awareness of the in-
teracting object. To better exploit the mutual benefits of the
interactions among different sources, we make the following
contributions.

First, privileged local features are dynamically integrated
to encourage the learning of action-relevant representations.
For verb classification, the negative effect of background
noise can be suppressed when target object information is
effectively leveraged. However, noun representation loses
finer spatial information. It fails to provide detailed posi-
tion information to be exploited for the attendance of an on-
going action. Position-aware object detection features offer
detailed local understanding of the objects. These features
can serve as privileged information to possibly reduce the
object-irrelevant motions. In noun classification, the intro-
duced privileged information enhances the significance of
correlated objects. The feature of action-relevant objects will
be reinforced, thanks to the finer object presentations from
the object detector.

Second, we propose symbiotic attention to enable mu-
tual interactions among the three sources. The privileged in-
formation is first merged with the global feature from one
branch. It is then normalized by a gated channel attention
mechanism, which reweights the merged feature. This nor-
malization process underlines the action-relevant informa-
tion from the feature in the other branch. After this, each
spatial position has integrated all three sources, i.e., the
two branches information, and the privileged information.
We leverage a spatial relation module to further catalyze
the communication between the verb and the noun features.
Most action-relevant information is identified to generate a
discriminative feature for final classification. This symbiotic
attention mechanism dynamically integrates three sources of
information towards better action recognition.

The effectiveness of our SAP framework is validated
quantitatively and qualitatively. We achieve the state-of-
the-art performance on two large-scale egocentric video
datasets, i.e., EPIC-Kitchens and EGTEA (Li, Liu, and Rehg
2018). Notably, we outperform the state-of-the-art (Wu et al.
2019a) by 2.7% on EPIC-Kitchens test unseen set.

Related Work
Deep Video Recognition
Deep learning methods have achieved promising perfor-
mance on the video classification task. (Simonyan and Zis-
serman 2014) proposed to utilize both RGB frames and
optical flow as the 2D CNN input to modeling appear-
ance and motion, respectively. TSN (Wang et al. 2016) ex-
tended the two-stream CNN by extracting features from
multiple temporal segments. (Tran et al. 2015) proposed
a 3D CNN to learn the spatial-temporal information. I3D
initializes 3D CNN with the inflated weights of 2D CNN.
(Hara, Kataoka, and Satoh 2018) evaluated various 3D CNN
architectures on a large-scale video dataset and demon-
strated the effectiveness of 3D models. More recently, (Xie
et al. 2018) and (Tran et al. 2018) proposed to decompose
the 3D kernel to spatial and temporal convolution. More-
over, Recurrent Neural Networks (RNNs) are effective ar-
chitectures for temporal modeling and have been found use-
ful for video classification in (Abu-El-Haija et al. 2016;
Zhu, Xu, and Yang 2017). These deep models are designed
for third-person video recognition. They are able to capture
motion and scene information but are not sufficient to locate
various small objects in egocentric videos accurately.

First Person Action Recognition
Compared to third-person video recognition, egocentric ac-
tion recognition is more dependent on the modeling of the
hand-object interaction. (Fathi, Farhadi, and Rehg 2011)
proposed to learn a hierarchical model which exploits the
consistent appearance of objects, hands, and actions and re-
fines the object prediction based on action context. (Ma, Fan,
and Kitani 2016) utilized a hand segmentation net to lo-
cate the object of interest. After that, the cropped regions
and optical flow images are fed to a two-stream CNN to
learn the action and object representation jointly. (Baradel et
al. 2018) proposed to perform object-level visual reasoning



about spatio-temporal interactions in videos through the in-
tegration of object detection networks. More recently, (Wu et
al. 2019a) combined Long-Term Feature Banks that contains
object-centric detection features with 3D CNN to improve
the accuracy of object recognition. The attention mechanism
is efficient to locate the region of interest on the feature map.
(Sudhakaran, Escalera, and Lanz 2019) proposed a Long
Short-Term Attention model to focus on features from rel-
evant spatial parts. They extended LSTM with a recurrent
attention component and an output pooling component to
track the discriminative area smoothly across the video se-
quence. (Li, Liu, and Rehg 2018) proposed to generate atten-
tion map of the hand-object interaction by the guide of the
gaze information. (Kazakos et al. 2019) developed a egocen-
tric action recognition model using three modalities.

Human-Object Interaction

Reasoning the interaction between human and objects is rel-
evant to our task. Most methods in this field are based on
detection models. For example, (Gkioxari et al. 2018) pre-
dicted a density map to locate the interacted object and cal-
culated the action score, with a modified Faster RCNN ar-
chitecture. (Qi et al. 2018) proposed Graph Parsing Neural
Networks that incorporates structural knowledge and deep
object detection model. (Fang et al. 2018) developed a pair-
wise body-part attention model which can learn to focus on
crucial parts for human-object interaction (HOI) recogni-
tion. Besides, some works use human-object interactions to
help recognize actions. (Wang and Gupta 2018) proposed to
represent videos as space-time region graphs, which models
shape dynamics and relationships between actors and ob-
jects. (Sun et al. 2018) developed an Actor-Centric Rela-
tion Network for spatio-temporal action localization. Most
of these HOI techniques rely on the appearance of the ac-
tors, which is absent in egocentric videos. Instead of the use
of the detection features of humans, we pay attention to the
interactions between the motion and the objects.

Proposed Method

Overview

In this section, we illustrate our network architecture for
egocentric video recognition. We develop three base net-
works to extract features from the input video: (1) VerbNet
is a 3D CNN and takes a video clip as input. It is designed to
capture the motion information. (2) NounNet has the same
architecture as VerbNet. It is trained to produce a feature
representing object appearance. (3) Object detection model
takes sampled individual frames as input. We use Faster R-
CNN as our detector and utilize RoIAlign operation to ob-
tain the local object features as privileged information. The
output features of the three base models are fed to the subse-
quent SAP module. We aim to enable effective communica-
tion among VerbNet, NounNet, and Privileged Information.
The SAP module generates two feature vectors which can be
used to predict verb class and noun class. The overall frame-
work is illustrated in Fig. 2.

Preliminaries
For each input egocentric video X = {x1, ..., xt} with t
frames, its verb and noun label is yv and yn, respectively.
The action y = (yv, yn) is a combination of the verb and
noun. We use two individual 3D CNNs as the backbones in
our framework, with one for the verb feature extraction and
the other for the noun feature extraction. The extracted verb
feature fv ∈ RC contains the motion information, where
C is the dimension of the extracted feature. Differently, the
noun feature fn ∈ RC contains the global appearance infor-
mation.

To enhance the global representation through the commu-
nication between two branches, we use a pre-trained detec-
tion model to provide detailed information of objects in the
video. Considering the efficiency, for each video, we only
use M sampled frames for detection inference. The output
of the RoIAlign layer of the detection model is regarded
as the feature for each detected object. To save memory us-
age and reduce the noisy information, we only keep top-K
object features according to their confidence scores for each
sampled frame. Thus, we have the auxiliary object feature
matrix fo ∈ RN×C , which contains N = M × K object
features of the video. The verb feature fv , noun feature fn,
and object feature matrix fo are interacted with each other to
produce more discriminative features for action recognition
with the following SAP module.

Symbiotic Attention with Privileged Information
As illustrated in Fig. 2, SAP includes three stages. First, the
privileged information is integrated into the global feature
from one branch. Second, the fused object-centric features
are recalibrated by the other branch utilizing cross stream
gating mechanism. After that, the normalized feature matrix
is attended by the other branch to aggregate the most action-
relevant information within an action-attended relation mod-
ule. Considering the symmetry of SAP, we only formulize
the noun branch as an example in the following section.

Privileged Information Integration. The separated verb
branch and noun branch produce two feature vectors fv and
fn by global average pooling. The local information in these
features is indistinct. We aim to leverage object feature ma-
trix fo as privileged information to inject the local details
into the global features. Moreover, the position-aware ob-
ject features can also guide the model to attend salient area.
Thus, we need to fuse fo with fv and fn, respectively. Be-
sides, it’s necessary to avoid jumbling the object feature ma-
trix fo. To these ends, we perform a concatenation operation
on the object feature matrix and the broadcasting global fea-
ture vectors. After that, we use a nonlinear transformation
to enhance the fused feature. Formally, this operation can be
presented as follow:

f n̂ = ReLU(Wn
f f

n +W o
f f

o + bf ), (1)

where Wn
f ,W

o
f ∈ RC×C , bf ∈ RC and f n̂ ∈ RN×C . Each

column in f n̂ represent a object-centric feature, which inte-
grates the global noun appearance with a explicit local object
information.
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Figure 2: The proposed method. Our framework consists of three feature extractors and one interaction module SAP. VerbNet
and NounNet produce global features. Detection Model generates a set of local object features as privileged information. The
privileged information is integrated into the global features to obtain object-centric feature matrices. These feature matrices
are normalized by a cross stream gating mechanism. After that, the object-centric matrices are attended by the other branch to
select the most action-relevant information. The outputs of SAP are used to classify the verb and noun, respectively.

Cross Stream Gating. The fused object-centric feature
matrix contains useful local details. However, due to the ex-
istence of inaccurate detection regions, there are quite a few
disturbing background noises in the features. To address this
problem, we propose a gated channel attention to underline
the action relevant information. Furthermore, to enhance the
interaction between the verb stream and noun stream, we
utilize a cross gating mechanism. For an input noun feature
matrix f n̂, we generate gating weights for it using the verb
feature fv:

gn = Sigmoid(Wn
g f

v + bg), (2)

where Wn
g ∈ RC×C , bg ∈ RC and gn ∈ RC . The output

is produced by rescaling the noun feature matrix with the
gating weights:

fng = gn � f n̂, (3)

where fng ∈ RN×C and � denotes the element-wise mul-
tiplication. After re-calibrating the object-centric noun fea-
ture by the verb feature, the action-unrelated noise can be
suppressed. Moreover, the cross gating mechanism enables
mutual communication between the two branches, which ex-
ploits the correlations of verbs and nouns adaptively.

Action-attended Relation Module The calibrated object-
centric feature matrix contains the action-relevant informa-
tion and implicit guidance about the spatio-temporal po-
sition of an on-going action. To make full use of the in-
formation, we consider uncovering the relationships among
the features. First, we propose to assess the relevance be-
tween the global feature and position-aware object-centric

feature. Second, we sum the object-centric features weighted
by the relevance coefficients. Specifically, we perform atten-
tion mechanism on the normalized object-centric noun fea-
tures fng and the original verb feature fv by

fna = Softmax(fng f
v)fng , (4)

where the final noun feature fna ∈ RC . Through the interac-
tion of global feature and object-centric features, our model
selects the most action-relevant feature for classification.

Training and Objectives
We use Faster R-CNN with ResNeXt-101-FPN backbone
as our object detector. Following the training procedure in
(Wu et al. 2019a), we first pre-train the detector on Visual
Genome and then finetune it on EPIC-Kitchens object detec-
tion set. For VerbNet and NounNet, we adopt 3D Resnet-50
(Hara, Kataoka, and Satoh 2018) as our backbones. The two
nets are both initialized with Kinetics pretrained weights.
We first individually train the VerbNet and NounNet with
the corresponding Cross-Entropy Loss: Lv and Ln. After
the base training stage, we cascade our SAP module and
fine-tune the entire model in an end-to-end manner. The ob-
jective for the fine-tuning is the sum of Lv and Ln.

Action Re-weighting
The actions are determined by the pairs of verb and noun.
The basic method of obtaining the action score is to calcu-
late the multiplication of verb probability and noun prob-
ability. However, there are thousands of combinations and
most verb-noun pairs that do not exist in reality, e.g. “open



the knife”. In fact, there are only 149 action classes that have
more than 50 samples in EPIC-Kitchens dataset (Damen et
al. 2018). Following the approach in (Wu et al. 2019a), we
re-weight the final action probability by a prior, i.e.

P (action = y) = µ(yv, yn)P (verb = yv)P (noun = yn),
(5)

where µ is the occurrence frequency of action in training set.

Experiments
Datasets
We evaluate our method on two large-scale egocen-
tric datasets: EPIC-Kitchens (Damen et al. 2018) and
EGTEA (Li, Liu, and Rehg 2018).

EPIC-Kitchens is the largest dataset in first-person vi-
sion so far. It consists of 55 hours of recordings capturing all
daily activities in the kitchens. The activities performed are
non-scripted, which makes the dataset very challenging and
close to real-world data. The dataset contains 39,594 action
segments which are annotated with 125 verb classes and 321
noun classes. We split the original training set to new train-
ing and validation set following (Baradel et al. 2018). We
focus on the recognition task on EPIC-Kitchens, which is
to predict the verb, noun, and the combination pair in each
video segment.

EGTEA is a large-scale egocentric video dataset which
consists of 10,321 video clips annotated with 19 verb
classes, 51 noun classes, and 106 action classes. There are
no bounding boxes annotations in this dataset.

Experiment Settings
We implement and test our method using Caffe2, PaddlePad-
dle and Pytorch. We observe similar performance from these
deep learning frameworks. Specifically, we pretrain the base
models (VerbNet and NounNet) individually and then fine-
tune the entire model in an end-to-end manner. We find in
our experiments that end-to-end training consistently yields
better performance than two-stage training, which only up-
dates the SAP model at the second stage. Next, we first il-
lustrate the details on how to pre-train the backbones (Back-
bone details) and how to extract privileged information (De-
tection details). Finally, we show the details of the end-to-
end fine-tuning (SAP details).

Backbone details. We take the Kinetics pre-trained
ResNet50-3D model as the initialization of our backbone
model. We then train the backbone models (VerbNet and
NounNet) individually on the target dataset. The input of
the two models is the trimmed video clips with 64 frames.
The targets for the VerbNet and NounNet are the verb label
and noun label, respectively. Videos are decoded at 60 FPS
for the EPIC-Kitchens dataset, and 24 FPS for the EGTEA
dataset. We adopt the stochastic gradient descent (SGD)
with momentum 0.9 and weight decay 0.0001 to optimize
the parameters for 40 epochs. The overall learning rate is
initialized to 0.003 and then changed to 0.0003 in the last
10 epochs. The batch size is 32. During training, the frame
size is 224 × 224 pixels, randomly cropped from a random
scaled video whose side is randomly sampled in [224, 288].
We sample 64 frames with stride=2 for both datasets. During

testing, for each input video segment, we use the center clip
and scale it to the size 256. Then we use the center cropped
frames with size 224 as the input.

Detection details. Following (Wu et al. 2019a), we use
the same Faster R-CNN to detect objects and extract ob-
ject features. The detector is first pre-trained on Visual
Genome (Krishna et al. 2016) and then fine-tuned on the
training split of the EPIC-Kitchens dataset. For fine-tuning,
we use a batch size of 12 and train the model for 15k it-
erations. We use an initial learning rate of 0.005, which is
decreased by a factor of 10 at iteration 116k and 133k. Fi-
nally, our object features are extracted using RoIAlign from
the detector’s feature maps. Considering the efficiency, for
a video clip, we extract object features on the center win-
dow with a size of 6 seconds. The sample rate is two frames
per second. For each frame, we keep the top five features
according to the confidence scores. Therefore, we have 60
detection features for a video clip. For EGTEA, we use the
detection model pretrained on EPIC-Kitchens to extract ob-
ject features.

SAP details. With the pre-trained backbone models and
the detection results, we fine-tune the backbone models with
our SAP module in an end-to-end manner. We use the same
SGD to optimize the parameters for 40 epochs with batch-
size of 32. The learning rate is initialized to 0.0001 and then
reduced to 0.00001 in the last 20 epochs. The rest training
details are the same as the backbone details.

Comparison with State-of-the-art Results
We compare our model with the following state-of-the-art
methods. TSN (Price and Damen 2019) is a two-stream
model for video recognition. The performance is provided
by the dataset authors. ORN (Baradel et al. 2018) introduces
object relation reasoning upon detection features, while the
interactions between verb and noun branches are largely ig-
nored. LFB (Wu et al. 2019a) combines Long-Term Feature
Banks (detection features) with 3D CNN to improve the ac-
curacy of object recognition. “LFB Max” denotes their best
operation in EPIC-Kitchens, which leverages max pooling
for feature bank aggregation. LSTA (Sudhakaran, Escalera,
and Lanz 2019) is an attention-based method, they only re-
port the top-1 action accuracy on the test set. Table 1 sum-
marizes the top-1 and top-5 accuracy for verb, noun, and
action predictions on the EPIC-Kitchens dataset.

Our model outperforms the state-of-the-art methods by a
large margin on all three evaluation splits, i.e., the validation
set, the test seen (S1) set and the test unseen (S2) set. On
the validation set, compared to our baseline model (“Ours
Baseline”), our SAP on the noun prediction significantly im-
proves the top-1 accuracy from 23.8% to 35.0%. Compared
to “LFB Max”, which also utilizes the detection features, our
method outperforms them by 3.2% at top-1 accuracy. For
the verb prediction, our SAP obtains 1.3% (from 54.6% to
55.9%) top-1 accuracy improvement compared to our base-
line model. For the final action classification, our method
achieves 25.0% top-1 accuracy, which is higher than “LFB
Max” by 2.2%. The significant improvement mainly benefits
from the interactions between the verb branch, noun branch,
and privileged information. Similar performance improve-



Method Pre-training Verbs Nouns Actions
top-1 top-5 top-1 top-5 top-1 top-5

Validation
ORN (Baradel et al. 2018) ImageNet 40.9 - - - - -

I3D GFA (Wang et al. 2019) Kinetics+ImageNet - - 34.1 60.4 - -
R(2+1)D 34 (Ghadiyaram, Tran, and Mahajan 2019) Kinetics 46.8 79.2 25.6 47.5 15.3 29.4

LFB Max (Wu et al. 2019a) Kinetics+ImageNet 52.6 81.2 31.8 56.8 22.8 41.1
Ours Baseline Kinetics 54.6 80.9 23.8 45.1 19.5 36.0

Ours SAP Kinetics 55.9 81.9 35.0 60.4 25.0 44.7
Test seen (S1)

TSN RGB (Price and Damen 2019) ImageNet 48.0 87.0 38.9 65.5 22.40 44.8
TSN Flow (Price and Damen 2019) ImageNet 51.7 84.6 26.8 50.6 16.8 33.8

TSN Fusion (Price and Damen 2019) ImageNet 54.7 87.2 40.1 65.8 25.4 45.7
R(2+1)D 34 (Ghadiyaram, Tran, and Mahajan 2019) Kinetics 59.1 87.4 38.0 62.7 26.8 46.1

LSTA (Sudhakaran, Escalera, and Lanz 2019) ImageNet - - - - 30.2 -
LFB Max (Wu et al. 2019a) Kinetics+ImageNet 60.0 88.4 45.0 71.8 32.7 55.3

Ours SAP Kinetics 63.2 86.1 48.3 71.5 34.8 55.9
Test Unseen (S2)

TSN RGB (Price and Damen 2019) ImageNet 36.5 74.4 22.6 46.9 11.3 26.3
TSN Flow (Price and Damen 2019) ImageNet 47.4 77.0 21.2 42.5 13.5 27.5

TSN Fusion (Price and Damen 2019) ImageNet 46.1 76.7 24.3 49.3 14.8 29.8
R(2+1)D 34 (Ghadiyaram, Tran, and Mahajan 2019) Kinetics 48.4 77.2 26.6 50.4 16.8 31.2

LSTA (Sudhakaran, Escalera, and Lanz 2019) ImageNet - - - - 15.9 -
LFB Max (Wu et al. 2019a) Kinetics+ImageNet 50.9 77.6 31.5 57.8 21.2 39.4

Ours SAP Kinetics 53.2 78.2 33.0 58.0 23.9 40.5

Table 1: The comparison with the state-of-the-art methods on the EPIC-Kitchens dataset.

ment is also observed on the test seen (S1) set and the test
unseen (S2) set. For the final action prediction, Our SAP out-
performs the state-of-the-art method “LFB Max” by 2.1% on
S1 and 2.7% on S2. Althogh(Ghadiyaram, Tran, and Maha-
jan 2019) use much more videos (65M videos) and extreme
deep 3D CNN to train the model, we still outperform their
best model on noun prediction and action prediction on S1.

The results on the EGTEA dataset is shown in Table 3.
The results of Two Stream, I3D and TSN, are provided by
the dataset developer (Li, Liu, and Rehg 2018). Ego-RNN
(Sudhakaran and Lanz 2018) and LSTA (Sudhakaran, Es-
calera, and Lanz 2019) utilize RNNs and attention mecha-
nism for egocentric video recognition. Our method achieves
higher accuracy on all splits than the state-of-the-art.

Ablation Studies
We conduct extensive ablation studies to evaluate the ef-
fectiveness of each component in our SAP model. Table 2
shows the noun prediction accuracy of several variants of
our method. The first row “CNN Baseline” indicates we only
use the noun branch, without the help of the verb and detec-
tion feature. “Noun + Verb” is the model that we take the
verb feature as the gate to enhance the noun feature. Specifi-
cally, the implementation of the gating operation is the same
as the single branch in CSG. “Avg Pooling” and “Max Pool-
ing” take only the privileged information as input. We apply
the corresponding pooling operation on the M ∗ N detec-
tion features and use a fully connected layer to output the
noun prediction. The last six rows show the effectiveness of

Inputs Methods Top-1Noun Verb Pril
X - - CNN Baseline 23.8
X X - Noun + Verb 24.2
- - X Avg Pooling 24.5
- - X Max Pooling 25.6
- X X Ours w/o CSG & ARM 30.4
X X X Ours w/o Gating 33.6
X X X Ours w/o Cross Stream 33.2
X X X Ours w/o CSG 32.6
X X X Ours w/o ARM 32.7
X X X Ours 35.0

Table 2: Ablation Study based on noun prediction on the
EPIC-Kitchens validation set. “Pril” denotes the privileged
information from finer object detection features, ARM de-
notes the action-attended relation module, CSG denotes the
cross stream gating.

our component CSG and ARM. Specifically, we decompose
CSG to two part: Cross Stream and Gating. We also inves-
tigate the impact of each part. In the table, “Ours w/o Cross
Stream” indicates using the same stream to gate and attend
the object-centric matrix.

Importance of the privileged information. The first two
rows in Table 2 shows the importance of the privileged in-
formation guidance. Without the detection feature, both the
noun branch (“CNN Baseline”) and the two branches with
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Figure 3: Qualitative results of our SAP model. The colored boxes show the top-5 detected regions and the numbers are the
corresponding attention weights generated by our action-attended relation module. Red indicates the failure case.

Methods Split1 Split2 Split3 Average
Two Stream 43.8 41.5 40.3 41.8

I3D 54.2 51.5 49.4 51.7
TSN 58.0 55.0 54.8 55.9

Ego-RNN 62.2 61.5 58.6 60.8
LSTA - - - 61.9
Ours 64.1 62.1 62.0 62.7

Table 3: The comparison with the state-of-the-art methods
on the EGTEA dataset.

communication of noun and verb branches (“Noun + Verb”)
fail in the noun prediction. It is consistent with our moti-
vation that the local information provided by the detection
features is a critical clue in the noun prediction.

In addition, the third row (“Avg Pooling”) and the fourth
row (“Max Pooling”) also achieve comparable performance
compared to the “CNN Baseline” model, which indicates the
detection features contains rich information for noun predic-
tion. Even without the input of the whole video clip, the local
details from the detection model are enough for predicting
the interacted object.

Importance of Cross Stream Gating. The performance
comparison between the model “Ours w/o CSG & ARM”
and the model “Ours w/o ARM” validates the effective-
ness of the CSG module. The CSG module enables mu-
tual communication between the verb branch and the noun
branch. Therefore, the CSG can improve the performance
from 30.4% to 32.7%. Moreover, the results of “Ours w/o

Cross Stream” and “Ours w/o Gating” demonstrate the two
components both benefits the noun prediction.

Importance of Action-attended Relation Module. The
last rows of Table 2 shows the improvement of the proposed
ARM. ARM can select the most action-relevant information
from the object-centric features and explore the relationships
in the spatio-temporal context. Therefore, the ARM further
improves the performance from 32.7% to 35.0%.

Visualization
In Fig. 3, we show some qualitative results on the EPIC-
Kitchens dataset. The colored boxes in the figure indicate
the top confident objects found by the pre-trained detec-
tion model. We do not use labels of detected objects since
they are not accurate. Instead, we use the detection feature
to guide the mutual communication of the verb and noun
branch. The numbers below each image are the value of
ARM attention weights for the five object-centric features.
Taking the first one (the left-top one) as an example, the
ground truth of this video clip is “chop parsley”. The pre-
trained detection model generates five proposals. Our ARM
module correctly finds the interacted area with “parsley” and
generates a high value (0.78) that describes the contribution
of the enhanced feature to the final noun classification.

Conclusion
In this paper, we propose a novel framework named Sym-
biotic Attention with Privileged Information for egocentric
action recognition. We introduce a new attention mecha-



nism called symbiotic attention that can interactively lever-
age sources from the verb branch, the noun branch, and
the privileged information. Our experimental results demon-
strate the effectiveness of our framework, and we outper-
form the state-of-the-art methods on large-scale egocentric
video datasets. In the future, we will explore a hierarchical
structure that can readily interpret the multi-step attention
process. It is also promising to design new models to sup-
press background distractors directly.
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