
Learning to Learn by Jointly Optimizing Neural Architecture and Weights

Yadong Ding1 Yu Wu2 Chengyue Huang1 Siliang Tang1*

Yi Yang1 Longhui Wei3 Yueting Zhuang1 Qi Tian4

1Zhejiang University 2Princeton University
3University of Science and Technology of China 4Huawei Cloud & AI

{dyadongcs, hcyue, siliang, yangyics, yzhuang}@zju.edu.cn , yuwu@princeton.edu

longhuiwei@pku.edu.cn, tian.qi1@huawei.com

Abstract

Meta-learning enables models to adapt to new envi-
ronments rapidly with a few training examples. Current
gradient-based meta-learning methods concentrate on find-
ing good model-agnostic initialization (meta-weights) for
learners. In this paper, we aim to obtain better meta-learners
by co-optimizing the architecture and meta-weights simulta-
neously. Existing NAS-based meta-learning methods apply a
two-stage strategy, i.e., first searching architectures and then
re-training meta-weights on the searched architecture. How-
ever, this two-stage strategy would break the mutual impact
of the architecture and meta-weights since they are optimized
separately. Differently, we propose progressive connection
consolidation, fixing the architecture layer by layer, in which
the layer with the largest weight value would be fixed first.
In this way, we can jointly search architectures and train the
meta-weights on fixed layers. Besides, to improve the gener-
alization performance of the searched meta-learner on all
tasks, we propose a more effective rule for co-optimization,
namely Connection-Adaptive Meta-learning (CAML). By
searching only once, we can obtain both adaptive archi-
tecture and meta-weights for meta-learning. Extensive ex-
periments show that our method achieves state-of-the-art
performance with 3x less computational cost, revealing our
method’s effectiveness and efficiency.

1. Introduction

As a popular solution for the few-shot learning problem1,
meta-learning develops deep learning models with the ability
to fit unseen tasks using only a few training examples [6, 30,
37]. Particularly, the gradient-based meta-learning methods
like MAML [6] attempt to find a set of initialization of
models’ weights (meta-weights). The model with meta-

*Siliang Tang is the corresponding author.
1A N -way, K-shot task denotes K samples from each class and N

classes in few-shot learning.

weights can produce good generalization performance on
an unseen task quickly with only a few gradient steps. In
addition, to obtain the optimized meta-weights, it’s also vital
to find better architectures good at meta-learning. Unlike
previous methods built on hand-crafted architectures, we
aim to obtain better meta-learners by enriching architecture
flexibility via Neural Architecture Search (NAS).

In this work, our target is to find optimal architecture and
meta-weights for a meta-learner which can quickly adapt
to new tasks with a few training samples. We represent the
candidate operations (e.g., conv and pooling) in each layer
as connections. Each of them is weighted by an attention
value over all candidate operations in the same layer, which
is called connection parameters. Larger values mean more
important operations/connections and we call each layer’s
adaptive connection as meta-connections. Thus the adaptive
architecture is composed of meta-connections, and the train-
ing process can be regarded as a co-optimization problem of
the connection parameters and the network weights.

There have been some recent works focusing on the ex-
ploration of architecture impact in meta-learning [10, 15].
However, most of these works either fall into the dilemma
of breaking the mutual impact between the architecture and
meta-weights or optimize the learner with a biased updating
rule. First, both Auto-Meta [10] and Auto-MAML [15]
apply a two-stage training strategy that obtains architectures
and meta-weights separately, i.e., first searching architec-
tures and then retraining meta-weights using the searched
architecture, as illustrated in Figure 1 (b). As mentioned in
the lottery ticket hypothesis [7], sub-networks pruned from
the supernet2 cannot get optimized effectively unless they are
initialized with the supernet’s network weights. It inspires us
that architectures and network weights have a mutual impact
on each other. Therefore, in NAS-based meta-learning, we
need to preserve the mutual impact between the architecture

2A supernet is a neural network whose layers consist of more than one
candidate operation (e.g., convolution, pooling). When searching finished,
each layer is pruned, leaving one specific operation at most.

(b) NAS-based Meta-Learning

Architecture search Meta-weights training

(a) MAML fixed architecture

Meta-weights
training

(c) Our method

Meta connections

Trained meta-weights

Intermediate
feature map

Progressive connection consolidation

…

Figure 1. (a) MAML focuses on the model-agnostic meta-weights. (b) The current NAS-based meta-learning methods consist of two stages.
The fixed architectures and their meta-weights are obtained separately, overlooking the mutual impact between them. (c) By co-optimizing
the architecture and meta-weights, our method can simultaneously obtain adaptive architecture and meta-weights for all unseen tasks,
requiring 3x less computational cost.

and meta-weights. Nevertheless, during the searching phase,
Auto-Meta [10] and Auto-MAML [15] could only obtain the
architecture with non-matched meta-weights. The matched
meta-weights are acquired based on the searched architecture
in the second stage (the re-training stage). Thus, the architec-
ture and meta-weights of existing works are trained one by
one (separately) instead of jointly optimized, breaking the
mutual impact between the architecture and meta-weights.
Second, to co-optimize the architecture parameters and net-
work weights, Auto-MAML [15] proposed one simple so-
lution called One-Propagation NAS-Based Meta-Learning
(OPML) [5, 15], as illustrated in Figure 3. For simplicity,
OPML treats the connection parameters and network weights
equally and updates them by one backpropagation in every
iteration. Nevertheless, due to the unequal learning rates, the
meta-learner’s real update direction is not parallel to the cal-
culated meta-gradient, which may harm the generalization
performance of meta-learner on all tasks.

To preserve the mutual impact between the architecture
and meta-weights, we propose progressive connection con-
solidation, as shown in Figure 1 (c). During searching, we
prune the supernet layer by layer, in which the layer with
the largest connection weight value will be consolidated
first. As the connections get fixed gradually, we can train the
matched meta-weights on these consolidated connections.
In return, the meta-weights would further affect the update
of the other unfixed connections. In this way, we continu-
ously preserve the mutual impact of the meta-connections
and meta-weights during the entire training phase. Mean-
while, we remove the update of the pruned connections
and weights and avoid retraining the derived architecture
from scratch, saving 66% computational cost. To update the

meta-learner in an un-biased way, we propose Connection-
Adaptive Meta-Learning (CAML), as demonstrated in Fig-
ure 2.(b). By backpropagating twice and updating alter-
nately, CAML can optimize both the connection parameters
and network weights using the same update direction as the
meta-gradients’, respectively. Thus, CAML improves the
searched meta-learner’s generalization performance on all
tasks, which is essential in meta-learning. Our contributions
are summarized as follows:

• To address the two-stage strategy’s separate optimiza-
tion problem, we propose progressive connection con-
solidation to gradually prune the supernet during
searching, preserving the mutual impact of the meta-
connections and meta-weights.

• We propose a more effective method, namely
Connection-Adaptive Meta-Learning (CAML), which
can improve the generalization performance of the opti-
mal architecture and meta-weights on all tasks.

• Extensive experiments show that our method achieves
state-of-the-art performance on both FC100 and Mini-
Imagenet datasets under various settings with 3x less
computational cost, revealing the effectiveness and effi-
ciency of our method.

2. Related work

2.1. Meta-learning

Meta-learning (learning to learn) [2, 6, 8, 13, 20, 22] meth-
ods learn from a series of learning tasks, enabling neural

networks to adapt to new data and new tasks quickly. In re-
cent years, meta-learning has proven effective in the few-shot
classification task, which requires neural networks to solve
new tasks given only a few training examples. Meta-learning
approaches can be classified into three major categories:
memory network [3, 25], metric learning [28, 31, 31] and
gradient-based approaches [1, 6, 20].

In gradient-based approaches, an optimizer called meta-
learner is learned to perform fast adaption on new tasks [9].
Instead of using the learned optimizer, model-agnostic meta-
learning (MAML) [6] tries to find a set of parameters (meta-
weights) for initializing the meta-learner. With a few steps
of gradient descent, the meta learner can fast adapt to new
tasks. However, previous methods focus on finding good
model-agnostic initialization.

2.2. Neural architecture search

Neural architecture search (NAS) [4,14,16,19,29,35,38]
aims to automatically design neural network architecture
to reduce human experts’ manual labour. The architec-
tures searched by NAS approaches have surpassed hand-
designed ones in many diverse tasks, such as image clas-
sification [19, 35, 39], semantic segmentation [17, 26], and
object detection [32, 34]. Most NAS methods can be clas-
sified into three categories: based on evolutionary algo-
rithms [18, 23, 24], based on reinforcement learning [39, 40]
and gradient-based methods [19, 33, 36].

In gradient-based NAS methods like DARTS [19], the
connection parameters and network weights can be opti-
mized jointly based on gradient descent. Therefore, gradient-
based NAS methods are capable of finishing searching within
one GPU day. However, the existing NAS approaches merely
target searching architectures for a single specific task. But
while turning to multiple tasks or multiple datasets, they
encounter troubles.

2.3. Meta-learning with neural architecture search

Recently, there have been some works combining NAS
and meta-learning to obtain a better meta-learner [10, 15].
However, in every iteration of searching, Auto-Meta [10]
needs to perform the entire meta-training process, while we
only train the meta-learners once. As a result, Auto-Meta
takes 112 GPU Days to converge, while our method only
requires 0.7 GPU Day. More importantly, current methods
separate the architecture searching and meta-weights train-
ing. They search architectures first and then re-train meta-
weights based on searched architectures. Unfortunately, in
this two-stage strategy, the meta-weights are overlooked dur-
ing architecture searching, breaking the mutual impact of
the architecture and meta-weights. In our method, both ar-
chitecture and meta-weights can benefit each other and lead
to better overall optimization.

Besides, some works concentrate on designing task-

specific architectures. Based on Bayesian inference,
BASE [27] is proposed to design task-dependent archi-
tectures for each meta-test task. MetaNAS [5] employs
Reptile [20] as its backbone and utilizes a soft pruning
strategy over all layers with the search progressing. T-
NAS [15] attempts to learn a general meta-architecture
through MAML [6]. Then both MetaNAS and T-NAS per-
form architecture adaptation for a new test task. Soft pruning
does not prune the operations of slight importance. Thus
MetaNAS still need to do one-shot pruning for the final ar-
chitectures like T-NAS. However, these methods need to
train every task-specific architecture from scratch, which is
computationally expensive. Moreover, these task-specific
methods also utilize the two-stage strategy, overlooking the
mutual impact of the connections and meta-weights.

3. Approach

Before introducing our approach, we make a review of
Model-Agnostic Meta-Learning (MAML) [6] and Differen-
tiable Architecture Search (DARTS) [19], which will help
us make a better understanding of our method. Then we
introduce our the progressive connection consolidation in
Section 3.3. and CAML in Section 3.4.

3.1. MAML

In MAML [6], the whole task dataset D is divided into
three subsets, i.e., meta-train Dmeta-train, meta-val Dmeta-val
and meta-test dataset Dmeta-test, respectively, as visualized in
the supplementary material. Each of them consists of two
tasks set, the support set {T s} and the query set {T q}. In
meta-train phase, MAML samples a set of tasks {T } from
the task distribution pT in Dmeta-train. Tasks sampled from
{T s} are employed for optimizing the inner-learner [19],
while tasks sampled from {T q} are used to optimize the
meta-learner. The main goal of MAML is to find good
initialized weights θ̃ for the meta-learner, which can quickly
adapt to new tasks drawn from pT . In the i-th meta-train
task, the gradient-based learning rule for updating the inner-
learner can be formulated as:

θm+1
i = θmi − βinner∇θm

i
L(fθm

i
; T s

i), (1)

where m represents the inner update step, and T s
i is the i-th

task sampled from {T s}. βinner is the inner learning rate of
weights. θ0i is a copy of θ̃. fθm

i
is the parameterized function

with parameters θmi , while L means the loss function. After
M steps of gradient descent, tasks T q

i sampled from {T q}
are used for updating the meta-learner by the following rule:

θ̃ = θ̃ − βmeta∇θ̃

∑
T q
i ∼p(T)

L(fθM
i
; T q

i), (2)

where βmeta is denoted as the outer (meta) learning rate of
weights. After the meta-train phase, the model learns well-
initialized weights, which help the meta-learner adapt to any
specific task in Dmeta-test within only a few steps of gradient
descent optimization.

3.2. DARTS

To obtain a continuous architecture search space,
DARTS [19] apply a softmax over all possible operation
candidates. The softmax relaxes the categorical choice of
one specific operation to a soft one. The output of each layer
is the expectation of all the outputs of operations,

ō(x) =
∑
o∈O

exp (ϕo)∑
o′∈O exp (ϕo′)

o(x), (3)

where x is the input, O is the candidate operation set, and
ϕo is the softmax attention on operation o. On the conver-
gence of DARTS, only operations with the relatively largest
attention values are preserved, while the others are pruned.
There is a bi-level optimization problem where the connec-
tion parameters and the network weights need to be opti-
mized jointly. DARTS solves the conflict by updating the
connection parameters ϕ and weights θ alternately:{

ϕ = ϕ− α∇ϕLval(θ − ξ∇θLtrain(θ, ϕ), ϕ),

θ = θ − β∇θLtrain(θ, ϕ),
(4)

where Ltrain and Lval are the loss function on training dataset
and validation dataset. α and β are the learning rates of the
connection parameters and the network weights, respectively.
ξ is the inner optimization learning rate and is a proxy for
obtaining ϕ∗, which is set to 0 in our work.

3.3. Progressive connection consolidation

To enrich architecture flexibility, we employ a super-
net during the architecture searching, while our final meta-
learner is a sub-network pruned from the supernet. Note
that in our method, we represent the candidate operations of
each layer as connections. Thus, the architecture searching
is to learn each layer’s adaptive connection, which we call
meta-connections.

The lottery ticket hypothesis [7] reveals the mutual impact
between the architectures and network weights. However,
previous work like T-NAS [15] utilizes a two-stage strategy,
i.e., first search architectures and then retrain meta-weights
based on the searched architectures. This two-stage training
would break the interaction since the two targets are opti-
mized separately. To preserve the mutual impact and build a
better co-optimization, we propose progressive connection
consolidation (PCC), pruning the supernet layer by layer
during searching. We define layer confidence as follows:
Layer confidence. A layer e consists of all operations from
the candidate operation set O. Following DARTS [19], we

use a zero operation in the candidate set to represent a lack
of connection. ϕe

o are the related connection parameters for
layer e. Thus, the layer confidence of layer e is defined as
the maximum attention value on non-zero operations:

Se
LC = max

o∈O,o ̸=zero

exp (ϕe
o)∑

o′∈O exp (ϕe
o′)

, (5)

In our experiments, we apply layer confidence to determine
each layer’s importance. The process of fixing one connec-
tion can be disassembled into two steps. First, we compute
the layer confidence SLC for all layers. The layer with largest
SLC is selected. Second, for the selected layer, we only keep
the operation with the largest weight value and remove oth-
ers. The kept operation is called meta-connection. As the
connections get pruned gradually, the meta-weights in the
fixed connections would further affect the update of the other
unfixed connections’ searching. On the convergences of the
meta-learner, we obtain an adaptive architecture and the
corresponding meta-weights simultaneously. We argue that
such a learner can learn knowledge from task distribution
pT more efficiently and effectively.

3.4. Connection-adaptive meta-learning

The main goal of our method is to find meta-learners
with both adaptive architecture and meta-weights. However,
as described in DARTS [19], there lies a bi-level optimiza-
tion problem. We cannot optimize connection parameters ϕ
solely without regard to the network weights θ.

As demonstrated in Figure 2, in MAML [6], they need
to solve another bi-level optimization problem [19] over
initial network weights and tasks. Therefore, we need to
tackle a 4-level optimization problem in NAS-based meta-
learning. Following MAML and DARTS, in each iteration,
we use two different backpropagations for optimizing ϕ and
θ, respectively. In other words, our CAML updates the
meta-learners of ϕ and θ alternately. Since we jointly opti-
mize the connection parameters and the weights, we have
four learners, i.e., inner-learner for ϕ, meta-learner for ϕ,
inner-learner for θ, and meta-learner for θ. During the inner
updates for connection parameters ϕ, the network weights
θ is fixed. Following the common settings in NAS meth-
ods [12, 19], we split Dmeta-train into Dmeta-train-split-arch and
Dmeta-train-split-weights (as shown in the supplementary mate-
rial), where Dmeta-train-split-arch is used for updating the con-
nection parameters ϕ, while the other is used for optimizing
the network weights θ. Note that every split has both the
support set and query set [31]. Given the i-th task T split-arch,s

i

sampled from the support set of Dmeta-train-split-arch, we opti-
mize ϕ by,

ϕm+1
i = ϕm

i − αinner∇ϕm
i
L(fϕm

i ,θ̃; T
split-arch,s
i), (6)

where αinner is the inner learning rate of the meta-connections
and m is the inner update step. fϕ,θ means the parameterized

(b) Connection-Adaptive Meta-Learning

direction of
gradient descent

update the
meta-learner

update the
inner-learner

(a) Model-Agnostic Meta-Learning

(𝜙!, 𝜃!)

(&𝜙", 𝜃!)

(𝜙#, 𝜃!)

(𝜙#, '𝜃$)

(𝜙#, 𝜃#)

on task 𝒯%
&

on task 𝒯'
&
∇(ℒ

∇)ℒ

parallel

𝛼"*+,∇(ℒ

𝛽"*+, ∇)ℒ parallel

𝜃!

'𝜃"

𝜃#

on task 𝒯'
&

∇)ℒ

parallel

𝛽"*+,∇)ℒ

Figure 2. L is the loss function. θ̂m, θ̂n and ϕ̂m are updated by the inner-learners, while θ0, θ1 and ϕ1 are optimized by the meta-learners.
(a).MAML [6] optimizes meta-weights using the same update direction as the meta-gradient’s. (b).Our CAML optimizes both the connection
parameters ϕ and network weights θ using the same update direction as the meta-gradients’, respectively.

function with connections ϕ (ϕ0
i = ϕ̃) and network weights θ.

After M inner update steps, the connections ϕ are updated
to be well-adapted to the specific task. We optimize the
meta-learner of ϕ according to the following formulation,

ϕ̃ = ϕ̃− αmeta∇ϕ̃L(fϕM
i ,θ̃; T

split-arch,q
i), (7)

where αmeta is the meta (outer) learning rate of ϕ. We use
similar rules to optimize the inner-learner and the meta-
learner of θ, as follows:

θm+1
j = θmj − βinner∇θm

j
L(fϕ̃,θm

j
; T split-weights,s

j), (8)

θ̃ = θ̃ − βmeta∇θ̃L(fϕ̃,θM
j
; T split-weights,q

j), (9)

where βinner and βmeta are the inner and meta learning rate of
network weights θ (θ0j = θ̃). T split-weights,q

j and T split-weights,s
j

are tasks from Dmeta-train-split-weights. On the convergence of
the meta learners of ϕ and θ, we obtain an adaptive architec-
ture ϕ∗ and the meta-weights θ∗. We simplify our method
by two groups of bi-level optimization as approximation.
The complete algorithm of our CAML is described in Alg.1.
Recently, T-NAS [15] and MetaNAS [5] have proposed a
group updating rules named One-Propagation NAS-Based
Meta-Learning (OPML),
[
ϕm+1
i ; θm+1

i

]
= [ϕm

i ; θmi]− ηinner∇[ϕm
i ,θm

i]
L(f ; T s

i),[
ϕ̃; θ̃i

]
=

[
ϕ̃; θ̃i

]
− ηmeta∇[ϕM

i ,θM
i]L(f ; T

q
i),

(10)

where ηinner = [αinner;βinner] and ηmeta = [αmeta;βmeta]. f
denotes the parameterized function, and T s

i and T q
i are sam-

pled from Dmeta-train. In other words, they treat connection
parameters and network weights equally and update them in
one propagation, as shown in Figure 3. We also conducted
our experiments based on OPML, and the quantitative com-
parison can be found in Table 3.

4. Experiments
To verify the effectiveness of our approach, we conduct

the experiments under the settings of few-shot learning on

Algorithm 1: CAML
Input: Meta-train dataset split-arch Dmeta-train-split-arch
Input: Meta-train dataset split-weights

Dmeta-train-split-weights.
Input: learning rate αinner, αmeta, βinner, βmeta.

1 Randomly initialize network weights θ and
connection parameters ϕ.

2 while not terminated do
3 Sample batch of tasks { T split-arch } from

Dmeta-train-split-arch;
4 for T split-arch

i ∈ {T split-arch} do
5 Get datapoints T split-arch,s

i from support set.
6 Update architecture parameters ϕm

i with
Equation 6 for M steps.

7 Get datapoints T split-arch,q
i from query set for

the meta-learner of ϕ.
8 end
9 Update ϕ̃ with Equation 7 for one step.

10 Sample batch of tasks { T split-weights } from
Dmeta-train-split-weights;

11 for T split-weights
j ∈ {T split-weights} do

12 Get datapoints T split-weights,s
j from support set.

13 Update network weights θmi with Equation 8
for M steps.

14 Get datapoints T split-weights,q
j from query set

for the meta-learner of θ.
15 end
16 Update θ̃ with Equation 9 for one step.
17 if pruning required in this iteration then
18 Prune the network architecture and weights.
19 end
20 end

some popular datasets, e.g., Omniglot [11], FC100 [21] and
Mini-Imagenet [22]. Our experiments consist of architecture
search and evaluation. We search for a meta-learner that has
both the adaptive architecture and the meta-weights during
the training stage. Then we evaluate the searched meta-

(𝜙!, 𝜃!)

on task 𝒯"
#

('𝜙$, (𝜃$) (𝜙%, 𝜃%)

∇&ℒ

∇'ℒ

∇ℒ

𝛽$()* ∇'ℒ

α$()*∇&ℒ

α$()* ≠ 𝛽$()*
not parallel

Figure 3. In previous works (e.g., T-NAS [15] and MetaNAS [5]),
connection parameters and network weights are treated equally
and updated by one backpropagation. Due to the unequal learning
rates, the meta-learner’s update direction is not parallel to the meta-
gradient.

learner. At last, we do some ablation studies to demonstrate
the effectiveness of our CAML and PCC.

4.1. Architecture search

We apply the basic searching settings in DARTS [19] to
CAML. A cell [40] represented as a directed acyclic graph
consists of an ordered sequence of computational nodes.
We search for two cells composed of normal and reduction
cells for generalization and efficiency. Then we stack two
cells to build the whole network architecture. Therefore, the
architecture ϕ is determined by { ϕnormal, ϕreduce }.
Candidate operation set. As for the candidate operation set,
we use the same set as DARTS [19], which contains 8 kinds
of operations: (1) zero, (2) identity, (3) 3*3 max pooling, (4)
3*3 average pooling, (5) 3*3 depth-wise separate conv, (6)
3*3 dilated depth-wise separate conv, (7) 5*5 depth-wise
separate conv, (8) 5*5 dilated depth-wise separate conv.
Other detailed searching settings and searched architectures
are summarized in the supplementary material.

4.2. Evaluation on few-shot learning datasets

After the searching phase, a meta-learner with both adap-
tive architecture and corresponding meta-weights is obtained.
We train the searched meta-learner for 100 epochs with 1200
independent tasks for each epoch during the evaluation. Note
that different from DARTS [19], we train the searched ar-
chitecture without any modification (e.g., channels and ar-
chitecture). We employ the Adam optimizer (cosine decay)
with meta learning rate βmeta = 0.001 for the meta update.
A vanilla SGD with inner learning rate βinner = 0.01 is
used for optimizing the inner-learner. We also report the
performance of models by training the adaptive architecture
from randomly initialized weights. All results comes from
three different experiments with ± 1 std as error bars.

The experiments results on Mini-Imagenet and FC100
are represented in Table 1 The experiments results on Om-
niglot can be found in the supplementary material. On all
datasets, our method achieves the best performance with
less computational cost. CAML outperforms the baseline
Auto-MAML by 4.0% (68.1 % versus 64.1 %) with fewer

parameters (24.2K versus 26.1K), verifying the advantages
of our method. Moreover, our method can save at least
66 % search cost compared to other state-of-the-art NAS-
based methods. Thus, we finally obtain a meta-learner with
adaptive architecture and meta-weights by co-optimizing
connection parameters and network weights simultaneously.

We also make a comparison with other task-specific meth-
ods (like BASE [27], T-NAS [15], and MetaNAS [5]), as
shown in Table 2. Compared to those task-dependent meth-
ods, our CAML can achieve comparable performance with
fewer parameters. T-NAS [15] utilizes the two stage-strategy
for every meta-test task to obtain a higher accuracy of 52.8%,
and also reports a 215x more search cost.

4.3. Ablation studies

Contribution of CAML and PCC. We evaluate the con-
tribution made by two components of our methods, namely
CAML and PCC. Results are shown in Table 3. Progres-
sive connection consolidation (PCC) plays a vital role in
both one-propagation NAS-based meta-learning and CAML,
which helps to find meta-learners with higher performance.
PCC strengthens the co-optimization and mutual interaction
between the architecture and the network weights. Thus,
the searched weights show more significant potential than
a random initialization on derived architectures with PCC.
In CAML without PCC, we perform one-shot pruning at the
end of searching. Also, CAML achieves better performance
than OPML from two initialization conditions, demonstrat-
ing the effectiveness of our methods. Besides, CAML can
cooperate well with progressive connection consolidation to
provide further improvement.
CAML versus OPML. In existing works (e.g., T-NAS [15]),
the connection parameters and network weights are treated
equally. Thus ϕ and θ are optimized by backpropagating
once. We call the updating rules as one propagation NAS-
based meta-learning (OPML), as described in Section 3.4.
As shown in Table 3, though OPML can cooperate well with
PCC, it obtains a lower accuracy compared to CAML in
experiments. A potential reason for the performance im-
provement of our CAML might be the parallel optimization
direction of learners. In MAML [6], they design the update
direction of meta-gradient to update the meta-learner, as
shown in Figure 2.(a). The parallel update direction pro-
duces the meta-learner’s good generalization performance
on all new tasks. But in OPML, since learning rates of θ and
ϕ are usually unequal, the meta-learner’s composite update
direction is not parallel to the meta-gradient, as illustrated in
Figure 3. Analogous to MAML, our method would lead to
the same update direction as the meta-gradient, which helps
find better meta-learners.
Comparison of different search space. MetaNAS [5] con-

siders a different set of operations in its search space (which
is named as S1) so the results are not directly comparable. To

Dataset Method Params FLOPS Search cost Accuracy (%)
(K) (M) (GPU days) 1-shot 5-shot 10-shot

Mini- Auto-Meta [10] 28.0 - 112 49.6 ± 0.2 65.1 ± 0.2 -

Imagenet Auto-MAML [15] 26.1 27.2 2 51.2 ± 1.8 64.1 ± 1.1 -
Ours 24.2 15.0 0.7 52.2 ± 0.4 68.1 ± 0.3 -

FC100 Auto-MAML [15] 26.1 3.9 2 38.8 ± 1.8 52.2 ± 1.2 57.5 ± 0.8
Ours 18.4 3.9 0.7 39.2 ± 0.4 53.6 ± 0.2 57.7 ± 0.4

Table 1. Comparison with NAS-based methods on Mini-Imagenet and FC100 for 5-way classification accuracy.

Method Params Search Cost Accuracy (%)
(K) (GPU Days) 1-shot 5-shot

BASE (Softmax) [27] 1200 - - 65.4 ± 0.7
BASE (Gumbel) [27] 1200 - - 66.2 ± 0.7

MetaNAS [5] 30.0 7 49.7 ± 0.4 62.1 ± 0.9
T-NAS [15] 26.5 150 52.8 ± 1.4 67.9 ± 0.9

Ours 24.2 0.7 52.2 ± 0.4 68.1 ± 0.3

Table 2. Comparison with task-specific NAS-based methods on Mini-Imagenet for 5-way accuracy.

Updating PCC Params Train from Train from
rules scratch kept-weights

OPML ✗ 51.3K 59.0 ± 0.3 59.1 ± 0.6
OPML ✓ 44.9K 61.0 ± 0.4 64.2 ± 0.2
CAML ✗ 20.0K 62.6 ± 0.1 62.8 ± 0.4
CAML ✓ 24.2K 67.4 ± 0.5 68.1 ± 0.3

Table 3. Average 5-way, 5-shot accuracy on Mini-Imagenet. OPML
means One-Propagation NAS-Based Meta-Learning, which is men-
tioned in Section 3.4 and updates ϕ and θ in one backpropagation.
Architectures derived without PCC means that we only do one-shot
pruning at the end of searching like previous works [5, 15]. Note
that the supernet without pruning achieves an accuracy of 57.6 ±
1.2% with 220.0K parameters.

Search Method Params GPU Accuracy (%)
Space (K) Days 1-shot 5-shot

S1 MetaNAS [5] ≈ 30 7 49.7 ± 0.4 62.1± 0.9
S1 Ours 16.8 0.7 50.4 ± 0.4 65.4± 0.1

Table 4. Comparison of average 5-way accuracy on Mini-Imagenet.
In the search space of S1, our method can also achieve better
performance with fewer parameters and less search cost.

better illustrate the effectiveness of our method, we conduct
experiments that evaluate our method using the search space
of S1 on Mini-Imagenet. The experimental results are shown
in Table 4. Clearly, our method can also achieve better per-
formance with fewer parameters and less search cost using
the search space of S1, demonstrating the effectiveness of
our approach.
Train from kept meta-weights versus Train from scratch.
We propose progressive connection consolidation (PCC)

to fix the architecture gradually during the searching phase.
To validate the kept network weights’ contribution, we com-

pare our model with the meta-learner trained from scratch
(a random initialization). We also compare the model with
the hard-pruning criterion [19] instead of our PCC. We train
the hard-pruned architectures from a random initialization
and the kept network weights for evaluation. Results are
summarized in Figure 5. Our method learns knowledge from
task distribution pT more efficiently and effectively from
the kept initialization compared to the random initialization.
Besides, without our PCC, keeping weights does not perform
better than random weights. It indicates that our PCC helps
to enhance the mutual interaction between the architectures
and meta-weights. To better validate our motivation, we
sample the first layer of the models and show the distribution
in Figure 4. The distribution of our searched meta-weights
is closer to the optimization target, demonstrating the effec-
tiveness of the co-optimization. Figure 4 (b) also shows the
previous two-stage training strategy leads to a weak meta-
learner, whose weights distribution is far from the training
target.

Comparison of different pruning strategies. To prove our
layer confidence-based pruning strategy’s effectiveness, we
also prune the supernet with fixed orders like forwarding
sequence or backward. In addition, we also experimented
with two different pruning strategies, named variance-based
strategy and entropy-based strategy. The variance-based
strategy picks the layer with the largest variance of its opera-
tions’ architecture parameters to prune the supernet gradu-
ally, while the entropy-based strategy chooses the layer with
the smallest entropy of its architecture parameters. The
results are summarized in Table 5. Clearly, layer confidence-
based pruning strategy in our PCC could help us find better
adaptive architectures, achieving higher performance with
fewer parameters. Besides, we could also observe perfor-

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
weights value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pr
ob

ab
ilit

y

DKL(Pinit||Ptarget)
=0.6806

train from scratch
random initialization
train target

(a) Without PCC, train from scratch.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
weights value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pr
ob

ab
ilit

y

DKL(Pinit||Ptarget)
=0.5279

train from searched weights
searched initialization
train target

(b) Without PCC, train from searched weights.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
weights value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pr
ob

ab
ilit

y

DKL(Pinit||Ptarget)
=0.2444

train from searched weights
searched initialization
train target

(c) With PCC, Train from searched weights.

Figure 4. The network weights distribution of the first convolution layer during the evaluation. Without PCC, the searched weights are not
significantly closer to the training target than random initialization. PCC narrows the distribution gap between the searched weights and
the training target. Note that the train targets differ since they are derived from well-trained meta-learners with different architecture and
initialization.

0 10 20 30 40 50
train epoch

0.40

0.45

0.50

0.55

0.60

0.65

0.70

te
st

 a
cc

ur
ac

y

5-way 5-shot test accuracy on Mini-Imagenet

NO PCC train from scratch
NO PCC train from kept weights
PCC train from scratch
PCC train from kept weights

Figure 5. 5-shot, 5-way meta-test accuracy on Mini-Imagenet dur-
ing the evaluation. The searched weights can cooperate better with
the final architecture than a random initialization with PCC.

Sequence Params Train from Train from
(K) scratch searched-weights

Forward 34.0 61.0 ± 1.0 66.0 ± 0.1
Backward 27.7 63.6 ± 0.6 64.5 ± 0.2

Entroy-based 25.1 66.7 ± 1.0 67.7 ± 0.1
Variance-based 26.8 66.9 ± 0.2 67.8 ± 0.1
SLC based 24.2 67.4 ± 0.1 68.1 ± 0.2

Table 5. Average 5-way, 5-shot accuracy on Mini-Imagenet by five
pruning strategies of CAML. SLC means the layer confidence. Clearly,
among all five orders, SLC -based strategy outperforms the other prun-
ing strategies. Thus, in PCC, we prune the layers of the supernet in
descending order of SLC .

Method Accuracy (%)
1-shot 5-shot

Ours + MAML [6] 52.2 ± 0.4 68.1± 0.3
Ours + Reptile [20] 51.6 ± 0.3 68.5± 0.3

Ours + MAML++ [1] 53.4 ± 0.3 69.1± 0.5

Table 6. Comparison of average 5-way accuracy on Mini-Imagenet
by different meta-learning methods.

mance improvement by taking searched network weights as
initialization, which proves our methods’ effectiveness.
Comparison of different meta-learning methods. To fur-
ther evaluate the impact of NAS for meta-learning, we apply
CAML with other meta-learning methods like Reptile [20]
and MAML++ [1]. The results are presented in Table 6.
As shown in the table, our method can cooperate well with
other meta-learning methods (e.g., Reptile [20]). Several
techniques in MAML++ [1] can be directly employed in our
method, further promoting the performance.

5. Conclusion

In this work, we focus on the exploration of the architec-
ture impact in meta-learning. We target to find a meta learner
with both the adaptive architecture and the meta-weights that

can perform well on multiple similar tasks. The current two-
stage solutions are inefficient and ignore the co-optimization
of the architecture and meta-weights. To tackle the existing
problems, we propose a novel Progressive Connection Con-
solidation (PCC). By fixing the architecture layer by layer
during searching, PCC preserves the mutual impact between
the architecture and meta-weights, leading to better overall
optimization. Besides, we propose CAML to update the
architecture parameters and network weights simultaneously
by two different backpropagations in one iteration, improv-
ing the generalization performance of the searched meta-
learner on all tasks. Extensive experiments show that our
CAML and progressive connection consolidation are both
helpful to a meta-learner’s success. Our method achieves
state-of-the-art performance on all few-shot datasets with 3x
less computational cost.

Acknowledgment
This work has been supported in part by National

Key Research and Development Program of China
(2018AAA0101900), Zhejiang NSF (LR21F020004), Key
Research and Development Program of Zhejiang Province,
China (No. 2021C01013), Chinese Knowledge Center of
Engineering Science and Technology (CKCEST).

References
[1] Antreas Antoniou, Harrison Edwards, and Amos Storkey.

How to train your MAML. In International Conference on
Learning Representations, 2019. 3, 8

[2] David Brüggemann, Menelaos Kanakis, Anton Obukhov, Sta-
matios Georgoulis, and Luc Van Gool. Exploring relational
context for multi-task dense prediction. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 15869–15878, 2021. 2

[3] Qi Cai, Yingwei Pan, Ting Yao, Chenggang Yan, and Tao Mei.
Memory matching networks for one-shot image recognition.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4080–4088, 2018. 3

[4] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng
Tang, and Cho-Jui Hsieh. Dr{nas}: Dirichlet neural archi-
tecture search. In International Conference on Learning
Representations, 2021. 3

[5] Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and
Frank Hutter. Meta-learning of neural architectures for few-
shot learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12365–
12375, 2020. 2, 3, 5, 6, 7

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In Proceedings of the 34th International Conference on Ma-
chine Learning, pages 1126–1135, 2017. 1, 2, 3, 4, 5, 6,
8

[7] Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural networks. In
International Conference on Learning Representations, 2019.
1, 4

[8] Fred X Han, Di Niu, Haolan Chen, Weidong Guo, Shengli
Yan, and Bowei Long. Meta-learning for query conceptualiza-
tion at web scale. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, pages 3064–3073, 2020. 2

[9] Sepp Hochreiter, A Steven Younger, and Peter R Conwell.
Learning to learn using gradient descent. In International Con-
ference on Artificial Neural Networks, pages 87–94. Springer,
2001. 3

[10] Jaehong Kim, Sangyeul Lee, Sungwan Kim, Moonsu Cha,
Jung Kwon Lee, Youngduck Choi, Yongseok Choi, Dong-
Yeon Cho, and Jiwon Kim. Auto-meta: Automated gradient
based meta learner search. arXiv preprint arXiv:1806.06927,
2018. 1, 2, 3, 7

[11] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and
Joshua Tenenbaum. One shot learning of simple visual con-
cepts. In Proceedings of the annual meeting of the cognitive
science society, volume 33, 2011. 5

[12] Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias
Muller, Ali Thabet, and Bernard Ghanem. Sgas: Sequential
greedy architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1620–1630, 2020. 4

[13] Juncheng Li, Xin Wang, Siliang Tang, Haizhou Shi, Fei Wu,
Yueting Zhuang, and William Yang Wang. Unsupervised

reinforcement learning of transferable meta-skills for embod-
ied navigation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12123–
12132, 2020. 2

[14] Ting Li, Junbo Zhang, Kainan Bao, Yuxuan Liang, Yexin Li,
and Yu Zheng. Autost: Efficient neural architecture search for
spatio-temporal prediction. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 794–802, 2020. 3

[15] Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin,
Peilin Zhao, Junzhou Huang, and Shenghua Gao. Towards
fast adaptation of neural architectures with meta learning. In
International Conference on Learning Representations, 2020.
1, 2, 3, 4, 5, 6, 7

[16] Bill Yuchen Lin, Ying Sheng, Nguyen Vo, and Sandeep Tata.
Freedom: A transferable neural architecture for structured
information extraction on web documents. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 1092–1102, 2020. 3

[17] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig
Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-deeplab:
Hierarchical neural architecture search for semantic image
segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 82–92, 2019.
3

[18] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha
Fernando, and Koray Kavukcuoglu. Hierarchical repre-
sentations for efficient architecture search. arXiv preprint
arXiv:1711.00436, 2017. 3

[19] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019. 3, 4, 6, 7

[20] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018. 2, 3, 8

[21] Boris Oreshkin, Pau Rodríguez López, and Alexandre La-
coste. Tadam: Task dependent adaptive metric for improved
few-shot learning. In Advances in Neural Information Pro-
cessing Systems, pages 721–731, 2018. 5

[22] Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. In International Conference on Learn-
ing Representations, 2017. 2, 5

[23] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the aaai conference on artificial
intelligence, volume 33, pages 4780–4789, 2019. 3

[24] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Sax-
ena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey
Kurakin. Large-scale evolution of image classifiers. In Pro-
ceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2902–2911. JMLR. org, 2017. 3

[25] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan
Wierstra, and Timothy Lillicrap. Meta-learning with memory-
augmented neural networks. In International conference on
machine learning, pages 1842–1850, 2016. 3

[26] Albert Shaw, Daniel Hunter, Forrest Landola, and Sammy
Sidhu. Squeezenas: Fast neural architecture search for faster

semantic segmentation. In Proceedings of the IEEE inter-
national conference on computer vision workshops, 2019.
3

[27] Albert Shaw, Wei Wei, Weiyang Liu, Le Song, and Bo Dai.
Meta architecture search. In Advances in Neural Information
Processing Systems, pages 11227–11237, 2019. 3, 6, 7

[28] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypi-
cal networks for few-shot learning. In Advances in neural
information processing systems, pages 4077–4087, 2017. 3

[29] Qingquan Song, Dehua Cheng, Hanning Zhou, Jiyan Yang,
Yuandong Tian, and Xia Hu. Towards automated neural
interaction discovery for click-through rate prediction. In Pro-
ceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 945–955,
2020. 3

[30] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele.
Meta-transfer learning for few-shot learning. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 403–412, 2019. 1

[31] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan
Wierstra, et al. Matching networks for one shot learning. In
Advances in neural information processing systems, pages
3630–3638, 2016. 3, 4

[32] Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian,
Chunhua Shen, and Yanning Zhang. Nas-fcos: Fast neural
architecture search for object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11943–11951, 2020. 3

[33] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS:
stochastic neural architecture search. In International Confer-
ence on Learning Representations, 2019. 3

[34] Hang Xu, Lewei Yao, Wei Zhang, Xiaodan Liang, and Zhen-
guo Li. Auto-fpn: Automatic network architecture adaptation
for object detection beyond classification. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 6649–6658, 2019. 3

[35] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel
connections for memory-efficient architecture search. In In-
ternational Conference on Learning Representations, 2020.
3

[36] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel
connections for memory-efficient architecture search. In In-
ternational Conference on Learning Representations, 2020.
3

[37] Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua Ben-
gio, and Yangqiu Song. Metagan: An adversarial approach
to few-shot learning. In Advances in Neural Information
Processing Systems, pages 2365–2374, 2018. 1

[38] Xuanyang Zhang, Pengfei Hou, Xiangyu Zhang, and Jian Sun.
Neural architecture search with random labels. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10907–10916, 2021. 3

[39] Barret Zoph and Quoc V Le. Neural architecture search
with reinforcement learning. In International Conference on
Learning Representations, 2017. 3

[40] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 8697–8710, 2018.
3, 6

