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Figure 1. Examples of our large-scale VIdeo Panoptic Segmentation in the Wild (VIPSeg) dataset.

Abstract

In this paper, we present a new large-scale dataset for
the video panoptic segmentation task, which aims to as-
sign semantic classes and track identities to all pixels in
a video. As the ground truth for this task is difficult to an-
notate, previous datasets for video panoptic segmentation
are limited by either small scales or the number of scenes.
In contrast, our large-scale VIdeo Panoptic Segmentation
in the Wild (VIPSeg) dataset provides 3,536 videos and
84,750 frames with pixel-level panoptic annotations, cov-
ering a wide range of real-world scenarios and categories.
To the best of our knowledge, our VIPSeg is the first at-
tempt to tackle the challenging video panoptic segmentation
task in the wild by considering diverse scenarios. Based
on VIPSeg, we evaluate existing video panoptic segmen-
tation approaches and propose an efficient and effective
clip-based baseline method to analyze our VIPSeg dataset.
Our dataset is available at https://github.com/
VIPSeg-Dataset/VIPSeg-Dataset/.

1. Introduction
Panoptic segmentation unifies semantic and instance

segmentation tasks by assigning a semantic label and an in-
stance ID to every pixel in an image, which is a fundamental
research topic in computer vision and has many practical
applications such as detailed action understanding, video
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editing, autonomous driving, and augmented reality. Re-
cently, plenty of approaches [15,16,26,27,29,31,34,51,63,
68, 74] have been proposed for panoptic segmentation and
achieved remarkable progress.

Although the image panoptic segmentation task has been
well explored, video panoptic segmentation [26] (VPS) is
still a challenging problem. VPS model should not only
provide unique and consistent semantic predictions within
a video, but also associate instance IDs for the same object
across frames. Recently some approaches and datasets [26,
48, 60, 61] have been proposed for video panoptic seg-
mentation. However, there are many limitations in cur-
rent VPS benchmarks. First, existing VPS datasets [26, 60]
are small-scaled due to the exhausting labeling cost. For
example, Cityscapes-VPS [26] only contains 500 videos
with six annotated frames per video. KITTI-STEP [60]
and MOTChallenge-STEP [60] only contain 50 and 4 video
sequences, respectively. The video panoptic segmentation
task is constrained by existing datasets due to their insuffi-
cient videos [60] and short video length [26]. Second, the
diversity of existing VPS datasets is restricted, i.e., only the
street view scene is considered in previous datasets. Thus,
the categories of things with pixel-level annotation are lim-
ited and biased. Some previous datasets [60] only focus
on people and vehicles. The diversity issue prevents these
datasets from being general in real-world applications (e.g.
video editing, augmented reality), which contains many
scenes and hundreds of things in our daily life.

To advance the research on video panoptic segmenta-
tion, we present a new dataset in this work, targeting large-
scale VIdeo Panoptic Segmentation in the wild (VIPSeg).



The dataset contains a wide range of real-world scenarios
(e.g., 232 scenes) and categories (e.g. 124 classes). To-
tally we annotated 3,536 videos and 84,750 frames with
pixel-level panoptic annotations, including both semantic
categories for background stuff (e.g., sky,ground) and track
identities for foreground things (e.g., person, cats, cars). To
the best of our knowledge, our VIPSeg is the first attempt to
tackle the challenging video panoptic segmentation task in
the wild by considering diverse scenarios. Since semantic
IDs and instance IDs of all pixels are annotated, our VIPSeg
can also applied to other video tasks including Video Ob-
ject Segmentation, Video Semantic Segmentation,Video In-
stance Segmentation, etc..

Annotating such a large-scale video panoptic segmenta-
tion is difficult and expensive, since semantic classes and
tracking ids of every pixel are required. To overcome ex-
hausting human efforts, we propose a Sparse-to-Dense In-
teractive Annotation strategy to efficiently annotate panop-
tic masks by the collaboration of humans and computers.
Concretely, we first propose to annotate instances for each
frame at a sparse frame rate (1 fps) and associate instances
using a tracking model [71] and manual correction. After
that, we adopt a video object segmentation model AOT [71]
to extend the frame rate from 1 fps to 5 fps and manually
refine instance masks to improve segmentation quality.

We conduct extensive experiments on VIPSeg to evalu-
ate existing video panoptic segmentation models. Most of
existing works [26, 48] on VPS inference predictions iter-
atively, where they generate the next frame prediction by
taking the previous results as the reference. However, real-
world videos would last long, and the iterative inference
would be less efficient in applications. Thus, we propose
an clip-based model extended from PanopticFCN [34] to
divide a video into non-overlapping clips and individually
generate predictions for each clip. The clip-based method
could process video panoptic segmentation in parallel and
be more efficient in real applications. We adopt the clip-
based model to evaluate and analyze our VIPSeg dataset.

2. Related Work
Panoptic Segmentation. Panoptic segmentation [27] is

a comprehensive computer vision task that combines the se-
mantic segmentation and instance segmentation tasks. Re-
cently, the panoptic segmentation task has become more
and more popular, and many methods [15,16,26,27,29,31,
34, 51, 63, 68, 74] have been proposed to address this uni-
fied task. A simple baseline introduced in [27] is to train
two sub-tasks separately and fuse the results heuristically.
After that, some methods present an end-to-end model but
still utilize two branches to tackle the panoptic segmenta-
tion task separately. For example, Xiong et al. [63] propose
UPSNet which leverages a two-stage detection module for
instance segmentation and a pixel-wise classification mod-

ule for semantic segmentation. Cheng et al. [15] design a
two-branch pipeline by predicting instance centers and pixel
offsets for instance segmentation and pixel-wise classifica-
tion for semantic segmentation. Differently, Li et al. [32]
suggest to represent and predict things and stuff in a uni-
fied fully convolutional pipeline. However, this method still
treats things and stuff with different strategies. Most re-
cently, transformer-based methods [16, 74] consider things
and stuff uniformly by initialized queries or kernels.

Video Semantic Segmentation. Compared to image se-
mantic segmentation [9–11, 14, 21, 25, 30, 35, 46, 52, 57, 58,
62, 66, 72, 73, 75, 76], video semantic segmentation (VSS)
requires assigning a class label to every pixel in all frames
of a video sequence. Early works for video semantic seg-
mentation only leverage adjacent RGB frames without an-
notations to improve the segmentation accuracy [18, 24,
38, 39, 44, 45] or accelerate inference speed by feature re-
using [6, 20, 23, 33, 40, 49, 69, 79]. Since early datasets for
video semantic segmentation [3,17,50] are limited by small
scales and sparse annotations, temporal evaluation for VSS
is not conducted. Recently, a large-scale dataset [43] with
dense temporal annotation is introduced, which provides a
suitable benchmark for the VSS task. A temporal context
fusion method [43] is proposed to promote both the seg-
mentation quality and temporal consistency. Video seman-
tic segmentation is different from our setting because it does
not require discriminating different instances and instance
tracking.

Video Object Segmentation. Video Ojbect Segmenta-
tion (VOS) [4,13,41,42,44,47,53–56,64,70,77,78] aims to
segment objects in a video sequence given only the object
masks on the first frame, which is class-agnostic. VOS ap-
proaches can be roughly divided into two types. Finetuning-
based methods [4, 42] train a network for foreground-
background segmentation, and fine-tune the model using
first-frame ground truth when testing. Propagation-based
methods [53,70,71] take results of previous frames as input
to generate the current frame mask. Our dataset can also be
applied to the VOS task.

Video Instance Segmentation. Video Instance Segmen-
tation (VIS) [2, 7, 8, 12, 19, 32, 65] combines instance seg-
mentation and video object tracking, which aims to seg-
ment and track instance masks across video frames. Early
works [5, 65] tackle the two sub-tasks separately, lever-
aging frame-by-frame instance segmentation and an addi-
tional tracking head to solve the VIS problem. Recently
proposed methods [37,67] consider temporal information to
improve the segmentation and tracking performance. Clip-
based methods [1, 22, 59] propose to leverage a clip of
frames simultaneously for higher segmentation and track-
ing accuracy. For instance, IFC [22] proposes memory to-
kens to exchange information across frames efficiently and
improves segmentation performance. Our dataset can also



be applied to the VIS task.
Video Panoptic Segmentation. Kim et al. [26] first in-

troduce the video panoptic segmentation (VPS) task, which
aims to simultaneously predict object classes, bounding
boxes, masks, instance id associations, and semantic seg-
mentation in video frames. VPSNet [26] is the first work
for VPS, which is based on UPSNet [63]. Pixel-level fu-
sion and object-level tracking are added to adjust the im-
age panoptic segmentation method UPSNet to the VPS task.
Woo et al. [61] further extend VPSNet by learning the tem-
poral correspondence across frame pairs. VIP-Deeplab [48]
extends Panoptic-Deeplab [15] using center offset regres-
sion from two frame pixels to one frame centers. Most of
these methods [26, 48] inference video panoptic segmen-
tation results iteratively. In this paper, we propose a clip-
based method to improve temporal stability and efficiency.

3. VIPSeg: A Large-scale VIdeo Panoptic Seg-
mentation Dataset

In this section, we detailly introduce our dataset,
VIPSeg, and compare our dataset with existing VPS
datasets and analyze VIPSeg using its statistics informa-
tion. In addition, we describe the annotation pipeline of
our VIPSeg dataset.

3.1. Dataset Summary

There are a total of 3,536 videos with 84,750 pixel-wise
annotated frames in VIPSeg. Each video lasts from 3 sec-
onds to 10 seconds. We sample frames with a frame rate
of 5 fps. Different from existing VPS datasets [26, 60] that
only focus on the street view scene, VIPSeg covers 232 sce-
narios with 124 categories, including 58 things’ classes and
66 stuff’s classes, making our dataset more challenging and
practical. We decided a category as thing or stuff consid-
ering if it is easy to split into individual instances. The in-
stance IDs of identical objects in a video are carefully asso-
ciated across frames. For example, as shown in Fig. 3, for
every moving dog, we provide the segmentation masks and
associated IDs. We totally annotate 926,213 instance masks
in VIPSeg.

3.2. Comparison with Existing Datasets

The comparisons between our dataset and existing re-
lated datasets are shown in Table 1. We mainly compare
our VIPSeg dataset with existing real-world video panop-
tic segmentation datasets, Cityscapes-VPS [26], KITTI-
STEP [60] and MOTChallenge-STEP [60]. A synthetic
dataset (VIPER) [26] from GTA-5 for the VPS task will
not be discussed in this paper. Compared with existing
VPS datasets [26,60], our VIPSeg contains more than 3,000
videos, which is about six times larger than Cityscapes-
VPS and about 60 times larger than KITTI-STEP and
MOTChallenge-STEP.

Moreover, our dataset is comprised of much more di-
verse scenes, including 232 indoor and outdoor scenes,
while previous datasets only focus on the street view scene.
Our dataset contains 124 categories with 58 thing classes
and 66 stuff classes, which is about six times larger than
Cityscapes-VPS and KITTI-STEP, and 18 times larger than
MOTChallenge-STEP, making our VIPSeg more challeng-
ing and practical for real-world applications. Since KITTI-
STEP and MOTChallenge-STEP are extended from track-
ing datasets, only “person” and “vehicles” are annotated
with tracking IDs. Differently, VIPSeg has more diverse
thing classes including “person”, “cars”, “cats”, “horses”
and so on. Besides, the average sequence length of our
VIPSeg is 24, which is much larger than Cityscapes-VPS (6
frames per video). A longer track length of instances will
introduce more occlusions and appearance change, which is
more complex and challenging.

3.3. Dataset Statistics

We organize the categories with a two-level hierarchical
taxonomy. Fig. 2 shows the histogram of instance masks
for parent classes and their sub-classes. There are a to-
tal of 25 parent classes and 124 sub-classes. In each par-
ent class, the distribution of the sub-class frequencies is
long-tailed, which is typically found when a dataset is natu-
rally collected without manual balancing. For thing-classes,
“person”, “chair or seat” and “car” contain the most object
masks, which are common objects in the real world. For
stuff-classes, “tree” and “sky” have the most object masks.

Fig. 4 (a) demonstrates the distribution of ranked object
frequencies for different scenes. The object frequencies also
show a long-tail distribution. Scenes with “person”,“chair
or seats” usually contain more instances, such as “computer
room” or “crosswalk”. In contrast, natural sceneries such
as “grotto” or “forest broadleaf” contain fewer instances.
Fig. 4 (b) shows the distribution of instance numbers for the
tracking length. Most instances exist across 15 frames (3
seconds).

The distributions of mean object area of different thing-
classes and stuff-classes are shown in Fig. 4(c)(d). The ob-
ject area of stuff is much larger than things on average. Both
two distributions are long-tailed, and the discrepancy of ob-
ject area for things is larger than stuff, indicating that it is
more challenging to recognize small thing objects.

3.4. Annotation Pipeline

We extend a video semantic segmentation dataset,
VSPW [43], to our video panoptic segmentation dataset.
Although semantic labels are provided, annotating such
a large video panoptic segmentation dataset is still time-
consuming and expensive. It is a burdensome project to an-
notate and associate 926,213 instances for all frames from
58 categories. The major difficulty is how to associate in-



Figure 2. The histogram of the ranked instance masks for parent classes and sub-classes.
Table 1. Comparison of video panoptic segmentation datasets.

Dataset #Scene #Videos #Frames #Thing Classes #Stuff Classes #Annotated Masks #Frames per Video
Cityscapes-VPS 1 500 3,000 8 11 72,171 6
KITTI-STEP 1 50 18,181 2 17 126,529 381
MOTChallenge-STEP 1 4 2,075 1 6 17,232 562
VIPSeg 232 3,536 84,750 58 66 926,213 24

Figure 3. Example of associated instance annotations.

stances across frames correctly with a dense frame rate. To
save time and human labor, we design a Sparse-to-Dense
Interactive Annotation pipeline, which provides an efficient
way to annotate and associate instances across frames. Con-
cretely, we first adopt a Sparse Annotation and Tracking
Loop for instance labeling and tracking with a sparse frame
rate of 1 fps. Then we use a Dense Pixel-label Propaga-
tion Loop to propagate annotated instance masks from 1 fps
to 5 fps and manually refine annotations to improve qual-
ity. To guarantee the annotation quality of the interactive
annotation pipeline, we employed four expert annotators to
double-check the errors generated by machines. The anno-
tation pipeline is shown in Fig. 5.

3.4.1 Sparse Annotation and Tracking Loop

Annotating a video with a high frame rate is often time-
consuming and wastes human labor. Thus, we first ask
human annotators to sparsely annotate instance-level seg-
mentation masks with a frame rate of 1 fps. It is difficult
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Figure 4. (a) The distribution of ranked object frequencies for
different scenes. (b) The histogram of instance masks for parent
classes and sub-classes.

to keep instance IDs consistent when annotating instance
masks. Thus, we divide the procedure into two steps. First,
annotators only need to label instance masks for each frame
and overlook video-level instance consistency. It took about
1,200 hours for instance annotation and human review. Sec-
ond, we adopt a multiple-object tracking model [71] to as-
sociate the annotated instances. Instance masks with their
IDs are propagated from the first frame. We compute Inter-
section over Union (IoU) between instances of two frames
and use Hungarian algorithm [28] to assign instance IDs to
the next frame. Some hard cases, such as occlusion or mo-
tion blur, usually lead to tracking failure. Thus, human an-
notators correct the mis-associated instances in one frame,
and the corrected instances are as inputs of the tracker to
further improve the tracking results. This loop is conducted



Figure 5. The “Sparse-to-Dense Interactive Annotation” pipeline, including two phases. (a) Sparse Annotation and Tracking Loop. First
we annotate instances by 1 fps manually. The annotated instances in a video are associated by a tracking model. (b) Dense Pixel-label
Propagation Loop. We use a video object segmentation model to propagate the annotated masks from 1fps to 5fps. The generated masks
are further checked and refined by human annotators.

until all instances are associated. Instances association by
computers costed about 20 hours.

3.4.2 Dense Pixel-label Propagation Loop

In this loop, we extend the associated instance masks and
IDs from 1 fps to 5 fps. We adopt a state-of-the-art video
object segmentation method, i.e., AOT [71], to propagate
the instance masks and ids from the annotated frames to
their adjacent unlabelled frames and generate masks at 5
fps. Instance propagation by computers costed about 20
hours. Owing to the scene complexity of our VIPSeg, there
exist defects in some propagated masks. After generating
instance masks of unlabelled frames, annotators are asked
to check the segmentation quality and refine the instance
masks artificially. The propagation method usually failed
when meeting complex videos with many instances in a
scene (more than 20). In VIPSeg, around 28% of videos
are complex and exist failure cases, which need further re-
finement. The time of the refinement for human annota-
tors depends on the complexity of each video. Videos with
less than ten instances required ten minutes or less. Videos
with 10-30 instances required 20-30 minutes and complex
videos with more than 30 instances usually took 40-60 min-
utes. The model propagation and artificial refinement are
operated repeatedly until the results are satisfactory.

4. Method
Existing works [26, 48] on VPS are usually built on iter-

ative frameworks, which take an adjacent frame as the ref-
erence to correlate temporal information within videos. To
preserve the unique tracking ids within a video, they have
to generate the next frame prediction based on previous re-
sults. However, real-world videos would last long, and the
iterative inference would be less efficient in applications. It

motivates us to develop a VPS baseline to study and analyse
our dataset in a non-iterative way.

In this paper, we propose a clip-based VPS model, Clip-
PanoFCN, extended from an image-based method Panop-
ticFCN [34]. For long video input, we divide it into sev-
eral non-overlapping clips and thus individually predict the
panoptic results, including tracking ids for thing objects.
After that, we perform clip-level association and tracking
to make predictions unique and consistent within the whole
long video sequence. It contains two stages, i.e., frame-
level modelling and clip-level aggregation, as shown in
Fig. 6.

4.1. Frame-level Modelling

For an input video V = (I1, I2, ..., IT ), Ii is the i-th
frame with a spatial size of H × W and the total frame
number in the video is T . We first process each video
frame Ii to obtain frame-level kernels and a high-resolution
feature map Fi based on the image-level method Panop-
ticFCN [34]. The generated kernels represent things or
stuff in the frame, while the high-resolution feature map
maintains spatial information of this frame. This module
mainly contains three components, i.e., FPN (Feature Pyra-
mid Network) [36] backbone, kernel generator, feature en-
coder. Following PanopticFCN, for each frame Ii, we first
extract the features using FPN. Then we use convolutional
layers to predict centers for each individual object and re-
gions for each stuff category, and another convolutional lay-
ers to generate kernel weights for each thing and stuff pre-
diction. Thus, we can obtain kernels by selecting the kernel
weight at the location of centers of things or by averaging
the kernel weights in the categories’ regions.

The feature encoder is comprised of three convolutional
layers and takes features from the FPN backbone to gener-
ate the high-resolution feature map Fi ∈ RC× 1

4H× 1
4W for



Figure 6. Our clip-based VPS model includes two stages, frame-level modelling and clip-level aggregation. Frame-level modelling is
extended from PanopticFCN [34] to generate kernels for things and stuff per frame. The Clip-level aggregation module fuses kernels to
generate an individual kernel for every instance in the clip.

frame Ii. Given a kernel of things or stuff, using Fi we can
generate the corresponding object mask by convolutional
operation.

4.2. Clip-level Aggregation

To efficiently adopt the image-level panoptic segmenta-
tion model to the video level, we propose the Clip-level Ag-
gregation (CA) in a non-iterative way. As shown in Fig. 6,
After generating kernels for each frame, we can aggregate
these frame-level kernels within a clip size of c. Then we
use the convolutional operation to generate instance masks
with feature maps and clip-fused kernels. Finally, we asso-
ciate identity tracks among clips to make unique and con-
sistent predictions for the whole video.

Clip-fused Kernel. Kernel fusion is designed to re-
move duplicate predictions and merge kernel weights with
the same identity. We use the average-clustering operation
to aggregate kernel weights which have the same predic-
tion identities. The intuition is that pixels belonging to
the same things/stuff would not have dramatic appearance
change within a short clip. For things, we calculate the co-
sine similarity of all generated kernels per category within
the clip, and then merge them if their similarity is higher
than a pre-defined threshold. For stuff, we simply calculate
the average pooling of kernels from all frames in the clip.
In this way, the fused kernel can be treated as an embed-
ding for an individual object for thing classes, or a semantic
category for those stuff classes in the clip. Assume the to-
tal number of things and stuff in the clip is N , we obtain
clip-fused kernels K ∈ RN×C .

Panoptic Mask Prediction. The generated things and
stuff kernels K in the clip are applied on the high-resolution
features { Fi,Fi+1, ...,Fi+c } by the convolutional oper-
ation to generate object masks in each frame. Since one

instance has an individual kernel to generate the instance
masks in the clip, the intra-clip association is guaranteed.

Inter-clip Tracking. Based on the clip-level results, we
then associate and merge the tracking IDs of things among
clips. Since content may change a lot in long videos, instead
of kernel fusion, we fuse and merge clip-level predictions
in a post-process way. To do so, we calculate the similarity
between every two adjacent clip-fused kernels. We merge
predictions if their clip-fused kernels are similar (similarity
higher than a threshold). Otherwise, we will assign those
dissimilar tracks new identities.

The association is performed clip by clip to generate
video-level panoptic predictions. In this way, we are able
to inference each clip in parallel and then post-process clip
predictions with a very lightweight cost on the master node.

5. Experiments

5.1. Dataset Splits

The train set, validation set and test set of VIPSeg
contain 2, 806/343/387 videos with 66, 767/8, 255/9, 728
frames, respectively. Considering the limitation of the com-
putation source, we resize all the frames in VIPSeg into
720P (the size of the short side is resized to 720) for training
and testing.

5.2. Evaluation Metrics

There are two commonly used evaluation metrics for
video panoptic segmentation, VPQ [26] and STQ [60].

Video Panoptic Quality (VPQ) [26] for video panoptic
segmentation is based on PQ (Panoptic Quality) [27] and
computes the average quality by using tube IoU matching
across a small span of frames. Formally, the VPQ score
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Figure 7. Impact of the clip length on VPQs and STQ.

across k frames is

VPQk =
1

Nclasses

∑
c

∑
p,g∈TPc

IoU(p, g)

|TP|kc + 1
2 |FP|kc + 1

2 |FN|kc
, (1)

where True Positive (TP) matches is defined as TP =
(p, g) : IoU(p, g) > 0.5 while False Positives (FP) and
False Negatives (FN) are defined accordingly. When k = 1,
the VPQ metric is equivalent to the image PQ metric. Since
VPQ is used to evaluate the sparsely annotated Cityscapes-
VPS dataset with six frames per video, the spans of VPQ
are mostly set to k = 4. When using more than four
frames, the difficulty of the 3D IoU matching increases sig-
nificantly. However, the video length of our VIPSeg is much
longer. Thus, in this paper, we use VPQ with the spans at
k = 1, 2, 4, 6. Longer spans will cost much time (It will
cost about an hour when k = 8).

Segmentation and Tracking Quality (STQ) [60] is
proposed to measure the segmentation quality and long
tracking quality simultaneously. STQ is comprised of two
factors, Association Quality (AQ) and Segmentation Qual-
ity (SQ). AQ is designed to measure pixel-level association
across an entire video. SQ is used to measure semantic seg-
mentation quality by class-level IoU. STQ is a balance of
AQ and SQ by STQ = (AQ × SQ)

1
2 . STQ can measure

the association and semantic segmentation quality of pre-
dictions in the entire video. However, STQ evaluates seg-
mentation quality using semantic segmentation and ignores
IoU per instance.

5.3. Segmentation Results and Analysis

We evaluate existing VPS methods on our VIPSeg
dataset, including VPSNet-FuseTrack [26], VPSNet-
SiamTrack [61], and VIP-DeepLab [48]. Moreover, we
evaluate and analyze VIPSeg using our Clip-PanoFCN.

5.3.1 Ablation Study and Analysis

We conduct ablation studies and result analysis based on
our Clip-PanoFCN baseline.

Impact of Clip Length. Clip-based method for video
panoptic segmentation can inference in parallel for effi-
ciency and the clip length is an important hyper-parameter.
Fig. 7(a) shows how the clip length C impact VPQs and
STQ. We set C from 1 to 8. C = 1 means we predict panop-
tic masks by single frame and use tracking by kernels. For
VPQ1 score, which means only single frame segmentation
quality is considered, with the clip length C grows, the per-
formance decreases correspondingly because the clip kernel
fusion module with long clip length introduces more noises
and affects the single frame segmentation quality.

When k > 1, VPQk scores indicate the panoptic seg-
mentation quality and instance association quality. With C
growing from 1 to 3, VPQ increases accordingly while VPQ
slightly decreases when C becomes larger, demonstrating
that there exists a trade-off between the segmentation qual-
ity and association quality when using the clip-based model.
A longer clip brings more stable association results but in-
troduces more noises that harm the segmentation quality.

STQ score indicates the semantic segmentation and
pixel-level association quality of entire videos. Fig. 7(b)
shows how the clip length affect STQ. A natural conclu-
sion is that for a longer clip the STQ score is higher. This
is because STQ focuses on the quality of entire videos and
longer clip brings better association results when the video
length is large.

Impact of the Tracking Strategies. Table 2 shows
that how tracking strategies affect the segmentation perfor-
mances. PanopticFCN [34] is our image-based baseline.
“+Track” denotes we use the kernel tracking strategy to
associate instances. “+Clip” denotes using the clip-based
model for object association. “+Clip and Track” denotes
we use the clip-based model for intra-clip instance associ-
ation and the kernel tracking for inter-clip instance asso-
ciation. Results show that both the clip-based model and
kernel tracking improve VPQ2 − VPQ6. VPQ1 is not im-
proved because this metric equals to image PQ metric that
is not sensitive to video-level instance association.

Table 2. Ablation on the Tracking Strategies.

Method VPQ1 VPQ2 VPQ4 VPQ6 VPQ
PanopticFCN [34] 25.7 21.2 19.6 18.5 21.2
+Track 25.6 22.6 20.4 19.7 22.0
+Clip 25.7 23.8 21.6 20.0 22.7
+Clip and Track 25.7 24.2 22.5 21.2 23.4

Result Analysis of VIPSeg. Fig. 8 (a) presents how
the number of instances per video affects the segmenta-
tion and association performance. The number of instances
per video is negatively correlated to the STQ score of the
video, indicating the videos with more instances perform
lower STQ score. This is reasonable since more instances
mean more complicated scenes and introduce more occlu-



Table 3. Comparison on the validation set and the test set.

(a) Results on the validation set.

Method Backbone VPQ1 VPQ2 VPQ4 VPQ6 VPQ STQ
VIP-DeepLab [48] ResNet-50 18.4|15.6|20.9 16.9|13.9|19.9 14.8|10.8|18.9 13.7|9.2|18.2 16.0|12.3|18.2 22.0
VPSNet-FuseTrack [26] ResNet-50 19.9|20.9|19.2 18.1|18.5|17.8 15.8|15.2|16.4 14.5|13.6|15.5 17.0|17.0|17.2 20.8
VPSNet-SiamTrack [61] ResNet-50 20.0|20.9|19.3 18.3|18.8|17.9 16.0|15.5|16.5 14.7|14.0|15.5 17.2|17.3|17.3 21.1
Clip-PanoFCN ResNet-50 24.3|27.1|21.5 23.5|25.8|21.2 22.4|24.2|20.6 21.6|23.2|20.0 22.9|25.0|20.8 31.5

(b) Results on the test set.

Method Backbone VPQ1 VPQ2 VPQ4 VPQ6 VPQ STQ
VIP-DeepLab [48] ResNet-50 16.9|15.3|18.4 15.0|11.8|18.1 13.6|9.7|17.5 12.5|8.2|16.9 14.5|11.3|17.7 20.2
VPSNet-FuseTrack [26] ResNet-50 18.2|18.4|18.0 17.0|16.5|17.5 14.8|13.2|16.2 13.6|11.7|15.5 15.9|15.0|16.8 19.0
VPSNet-SiamTrack [61] ResNet-50 18.5|18.6|18.4 17.2|16.7|17.7 15.1|13.2|17.0 14.0|12.0|16.0 16.2|15.1|17.2 19.1
Clip-PanoFCN ResNet-50 23.8|25.9|21.9 22.8|24.3|21.5 21.5|22.1|21.0 20.3|20.1|20.5 22.0|23.1|21.2 28.7

(a) (b)

Linear Fit

Figure 8. (a) Impact of the number of instance per video on STQ.
(b) Impact of the average instance area on STQ.

sions, making it harder to segment and track objects.
Fig. 8 (b) shows how the average area of instances per

video affects the STQ score. Although there exists a ten-
dency that the video with smaller instances performs lower
STQ, the area of instances is not a critical factor to affect
the segmentation and tracking quality.

Fig. 9 illustrates the comparison between results on
thing-classes and stuff-classes for different clip lengths. For
thing-classes, VPQk (k>1) is heavily affected by the clip
length. In contrast, for stuff-classes VPQk is similar with
the clip length growing, indicating that clip kernel fusion
only takes effects on the instances association but cannot
improve stuff segmentation quality.

5.3.2 Results Comparison

We report quantitative results on the baselines, including
VPSNet-FuseTrack [26], VPSNet-SiamTrack [61], VIP-
DeepLab [48] and our Clip-PanoFCN. We use the clip
length of 8 here. Table 3 shows the results of the base-
lines on VPQ and STQ. Clip-PanoFCN outperforms VP-
SNet [26, 61] and VIP-DeepLab [48] on both VPQ and
STQ. However, since the base models are different, the re-
sults cannot show the superiority of Clip-PanoFCN. The
main advantage of Clip-PanoFCN is the parallel processing.

(a) (b)

Figure 9. (a) Impact of the clip length on the segmentation quality
of thing-classes. (b) Impact of the clip length on the segmentation
quality of stuff-classes.

6. Limitations

The proposed dataset contains various categories in the
real world. Although our VIPSeg is much larger than ex-
isting VPS datasets, the number of training videos is still
insufficient to support the precise panoptic segmentation on
such various classes and scenes.

Besides, the distribution of instances for categories is
long-tailed in VIPSeg. The proposed Clip-PanoFCN is not
robust to the few-shot categories while there exist a large
number of tail classes in the proposed dataset and real-world
applications.

7. Conclusion

In this paper, we introduce a large-scale dataset for video
panoptic segmentation, VIPSeg. Different from the existing
datasets that are either small-scales or with a limited number
of scenes, our large-scale Video Panoptic Segmentation in
the Wild (VIPSeg) dataset provides large-scale pixel-level
panoptic annotations, covering a wide range of real-world
scenarios and categories. Besides, we evaluate the existing
video panoptic segmentation approaches and further pro-
pose an effective clip-based baseline method. Elaborate
analysis and experiments demonstrate the significance of
the proposed video panoptic segmentation benchmark.
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