
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021 1

Learning to Anticipate Egocentric Actions by
Imagination

Yu Wu, Linchao Zhu, Xiaohan Wang, Yi Yang, Fei Wu

Abstract—Anticipating actions before they are executed is
crucial for a wide range of practical applications, including
autonomous driving and robotics. In this paper, we study the
egocentric action anticipation task, which predicts future action
seconds before it is performed for egocentric videos. Previous
approaches focus on summarizing the observed content and
directly predicting future action based on past observations.
We believe it would benefit the action anticipation if we could
mine some cues to compensate for the missing information of
the unobserved frames. We then propose to decompose the
action anticipation into a series of future feature predictions.
We imagine how the visual feature changes in the near future
and then predicts future action labels based on these imagined
representations. Differently, our ImagineRNN is optimized in
a contrastive learning way instead of feature regression. We
utilize a proxy task to train the ImagineRNN, i.e., selecting
the correct future states from distractors. We further improve
ImagineRNN by residual anticipation, i.e., changing its target
to predicting the feature difference of adjacent frames instead
of the frame content. This promotes the network to focus on
our target, i.e., the future action, as the difference between
adjacent frame features is more important for forecasting the
future. Extensive experiments on two large-scale egocentric action
datasets validate the effectiveness of our method. Our method
significantly outperforms previous methods on both the seen
test set and the unseen test set of the EPIC Kitchens Action
Anticipation Challenge.

Index Terms—Action Anticipation, Action Prediction, Egocen-
tric videos

I. INTRODUCTION

ANTICIPATING the near future is a natural task that has
drawn increasing research attention [1], [2]. It has a wide

range of applications in the intelligent systems when it needs to
react before an action gets executed. For instance, it is critical
to anticipate if a car would stop or a pedestrian would cross
the road in the autonomous driving task. The prediction is
supposed to be seconds before the action is actually taken
place, so that the autonomous vehicle could have time to
react to avoid an accident. Under these circumstances, recent
works are proposed to predict activities a few seconds in the
future [3], [4], which is practical for real-world applications.

In this paper, we focus on the problem of egocentric action
anticipation defined in [4]. Egocentric (First Person Vision)
videos [5], [6] offers an interesting scenario to study the action
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Fig. 1. In the action anticipation task, the model needs to predict the
future action that happens T seconds later. Predicting the intermediate future
features [7], [8], [9], [10], [11] would benefit the action anticipation task. Our
study focuses on how to learn a better imagined intermediate feature.

anticipation problem. Given an egocentric video sequence
denoted as observed video, we aim to predict the future action
that happens after a time period of T seconds, whereas the time
T is known as the anticipation time.

Most previous approaches [3], [4] focus on summarizing the
past observed frames, and then directly predict the future ac-
tion that takes place T seconds later. These methods overlook
the temporal gap between the past observations and the future
action that is supposed to be predicted. However, frames in this
temporal period are closer to the future, thus containing more
useful evidence for the next action. If we could mine cues to
compensate for missing information of unobserved frames, it
would be easier for anticipation models to predict the future.

In this paper, we propose to tackle this issue by imagining
the near future. First, we decompose the long-time action
anticipation into a series of future feature predictions. We
imagine how the visual feature changes in the very near
future and then predict the future action labels based on
these imagined representations. Specifically, we design the
ImagineRNN to predict the next visual representation based
on past observations in a step-wise manner. Since our target is
to predict the future action, it is unnecessary to waste model
capacity on resolving the stochasticity of frame appearance
changes due to camera motion and shadows in egocentric
videos. Thus in ImagineRNN, we only generate the visual
representation instead of raw pixels. The final anticipation is
built on both the observed content and visual representation
that we imagined within the anticipation time T .

Recently, some works [7], [8], [9], [10], [11] also propose
to generate intermediate future frames or future content fea-
tures using RNN or GAN architectures. Most of these works
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use regression loss functions (e.g., l2 loss or cosine loss)
or discriminator (justifying real or fake) to optimize their
generator model. However, these optimization methods are too
deterministic in training the generator model. There are only
positive targets in these loss functions, leading to biased or
sub-optimal optimization on the predicted future features. In
addition, since actions are changed very quickly in egocentric
videos, the predicted future states should be distinguishable in
time sequences. Optimization with only positive targets would
overlook the state changes in the future time period.

Our ImagineRNN differs from existing works in two as-
pects. First is that our ImagineRNN is optimized in the
contrastive learning manner instead of feature regression. We
propose a proxy task to train the ImagineRNN by selecting
the correct future states from distractors. For the predicted
future feature, we first build a set of candidates containing
both the positive target (the ground truth future feature) and
negative distractors (features from other time steps). Then we
encourage the model to learn to identify the correct future
state from candidates given the observed context. In this way,
our ImagineRNN could essentially learn the change of future
features. We found the new optimization method significantly
improves the generalisability on the unseen test set.

Second, we further improve ImagineRNN by residual an-
ticipation, i.e., changing its target to predicting the feature
difference of adjacent frames, instead of the entire frame
feature. Different from [10], [11] that predict the entire optical
flow frames or dynamic image, we only predict the feature
changes between adjacent frames. The motivation is in three-
folds. First, the difference between adjacent frame features
is more important for forecasting the future. Predicting the
video difference promotes the network to focus on the change
of intermediate features, leading to better results on the
future action anticipation. Second, it reduces the load of the
ImagineRNN and thus saves the model capacity. In this way,
the information the ImagineRNN has to predict is minimized,
while the unchanged feature channels are directly carried
forward. Third, the unchanged content plays a role of shortcut
connection, avoiding the noise accumulation and the gradient
vanishing. To the best of our knowledge, we are the first to
forecast the difference of frames in generating future features.

We conduct extensive experiments on two large-scale ego-
centric video datasets EPIC-KITCHENS [5] and EGTEA
Gaze+ [12]. Results from the leaderboard of the EPIC-
KITCHENS action anticipation challenge clearly show our
model beats other existing single models. To summarize, our
contributions are summarized as follows:
� We propose ImagineRNN that breaks down the long-

time action anticipation into a series of step-wise feature
predictions of short periods, and then predicts the future
action labels upon these imagined features.

� We reformulate the future feature prediction problem,
and propose to optimize the ImagineRNN by picking
the correct future states from lots of distractors, which
essentially learns the change of future features compared
to the traditional regression loss functions.

� We further replace the ImagineRNN’s target by predicting
the difference between adjacent frames, which helps the

model focus on the feature change along time, leading to
better anticipation performance. Experiments with differ-
ent architectures validate the effectiveness of this change.

II. RELATED WORK

A. Video Understanding and Action Recognition

Deep learning methods have achieved promising perfor-
mance on the video classification task. Simonyan et al. [13]
proposed Two-Stream to utilize both RGB frames and optical
flow as the 2D CNN input to modeling appearance and
motion, respectively. Temporal Segment Networks (TSN) [14]
extended the two-stream CNN by extracting features from
multiple temporal segments. Tran et al. [15] proposed a 3D
CNN to learn the spatial-temporal information. Moreover,
Recurrent Neural Networks (RNNs) are also effective in
temporal modeling and have been found useful for video
classification in [16], [17]. More recently, some researchers
study the egocentric action recognition problem [18], [19],
[20], [21]. Sudhakaran et al. [19] proposed a Long Short-
Term Attention model to focus on features from relevant
spatial parts. Wang et al. [21] proposed a Symbiotic Attention
mechanism to enable the communications between motion
features and object features in egocentric videos. Our method
builds on these methods and uses TSN as a base framework
to train CNNs for action recognition.

B. Early Action Recognition

The early action recognition task [22], [23], [24], [1] is
to recognize the ongoing action as early as possible from
partial observations. In this task, the model is only allowed
to observe a part of the action videos, and predict the action
based on the video segment [25], [26]. This task is closed to
our target, the action anticipating task. Differently from these
works, in the egocentric anticipating task, the action should
be recognized before it starts, so we cannot partially observe
the action frames at the time of prediction.

C. Action Anticipation

Predicting the near future has been widely studied re-
cently [27], [28], [29], [30]. Action anticipation is to predict an
action before it occurs [31], [32], [33]. Previous works inves-
tigated different forms of action and activity anticipation [34],
[35], [36], [4], [37], [38], [39], [40]. We share a similar
idea with past works and use the recurrent neural networks
to summarize the past observations [34], [31]. Very recently,
RULSTM [4] consists of two LSTMs to anticipate actions
from egocentric video, where one LSTM is used to summarize
the past, and the other is used to predict future actions based
on the past future directly. Miech et al. [3] proposed to directly
anticipate future action based on the combination of past visual
inputs and past action recognition results. Concurrent to us,
Sener et al. [41] propose a multi-scale temporal aggregate
method for action anticipation by relating recent to long-range
observations. It computes recent and spanning representations
pooled from snippets that are related via coupled attention
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mechanisms. The experiments shows great advantages brought
by ensembles of multiple scales.

There are also some other interesting researches for the
anticipation task. In [34], the authors study the problem of
anticipating a sequence of activities within time horizons of up
to 5 minutes, in contrast to other works that anticipate the next
action within several seconds. [42] studies anticipating future
actions in the long-time period. Given an untrimmed video
containing a long composite activity, the proposed topological
affordance graphs could predict the actions that will likely
occur in the future to complete it. Ego-OMG [43] proposes
to structure the long video clips into a discrete set of states,
where each state represents the objects presently in contact or
anticipated to soon be in contact.

Given past observation, it might have many possible future
actions due to future uncertainty. Future uncertainty (alter-
native future) is important in the action anticipation task.
Furnari et al. [32] study how to explicitly incorporate the
uncertainty in the loss functions. Canutoet al. [44] propose
to minimize the model uncertainty instead of maximizing its
class probabilities, which could be used as the online decision-
making criterion for action anticipation. In [45], both an action
model and a length model are trained to capture the uncertainty
of future activities. In this paper, we do not explicitly model
the future uncertainty in our method. Given existing video
data, we only optimize the model to predict the exact next
future action that happens in the video. It is a limitation of our
method. We hope to handle uncertainty in our future works.

Some recent works [10], [11] propose to predict the optical
�ow frames or dynamic image in the future, which has a
similar motivation with our designed residual anticipation,i.e.,
predicting low-entropy signals (the frame-feature difference)
However, different from [10], [11] that predict the entire op-
tical �ow frames or dynamic image, we only predict the feature
changes between adjacent frames, which avoids wasting model
capacity on resolving the stochasticity of frame changes due
to camera motion in egocentric videos.

D. Contrastive Learning

Contrastive learning aims at optimizing models by distin-
guishing similar and dissimilar data pairs. Recent works [46],
[47], [48] proposed to utilize contrastive learning for self-
supervised learning. Contrastive Predictive Coding (CPC) [48]
proposed to learn representation by encoding predictions over
future observations from the past. MoCo [49] designed a
momentum encoder and maintained a queue of representations
to conduct contrastive learning. SimCLR [46] experiments
with different combinations of data augmentation methods
for paired samples in contrastive learning. Very recently,
Han et al. [47] proposed to introduce contrastive learning
into the action recognition task. The model is optimized
by a predictive attention mechanism over the compressed
memories that predicts future representations based on recent
observation. Different these methods, we focus on the action
anticipation task rather than representation learning. We found
the contrastive learning helps to learn the change of future
features, which can be used to obtain better intermediate
imaginary data in our ImagineRNN framework.

III. PROPOSEDAPPROACH

A. Egocentric Action Anticipation

Task de�nition. In the EPIC-Kitchens anticipation chal-
lenge [5], the egocentric action anticipation task is de�ned
to predict the future action one second before it happens. In
a more general task de�nition [4], the video is input in an
on-line fashion, with a short video snippet consumed every
� seconds,i.e., the video is divided into segments of length
� . For an action occurring at time� s, the model should
anticipate the action by observing the video frames before
� s � T . In our framework, our model is allowed to observe
the video segment of length(l � T) starting at time(� s � l )
and ending at time(� s � T). Following [4], we use the
same task setting and setl = 3 :5s and � = 0 :25s. We
also validate our model under different anticipate time,i.e.,
T 2 f 1:75s;1:5s;1:25s;1s;0:75s;0:5s;0:25sg. Note that it is
more general compared to the task de�ned in [5], which only
validates the model under anticipate timeT = 1 .
CNN pretraining. The input of our model is the frame-level
feature provided by the pre-trained TSN model. In action
anticipation, the anticipation targets (objects and actions) do
not always appear in the input video, making it hard to
learn good representations for CNN models in an end-to-end
manner. To avoid over-�tting and make the CNN model more
meaningful, we follow [4] and pre-train the TSN model on the
action recognition task. Then the pre-trained CNN weights are
�xed during the following training on our action anticipation
task. We pre-process the videos and obtain different modalities
features by pre-trained CNN models,i.e., RGB frame features,
optical �ow frame features, and the object features.
Encoder. We take a Long Short-Term Memory (LSTM) [50]
model as the temporal encoder. At each time step, the encoder
takes as input the visual content that is being observed.
Speci�cally, at each time-stept, we use the pre-trained TSN
model to get the current frame featuref t . Then we input the
featuref t to update the memory. The new encoding hidden
statehE

t +1 is obtained by updating the LSTM unit as follows:

hE
t +1 = Encoder (f t ; hE

t ); (1)

wherehE
t is the hidden state from the previous forward. We

initialize the hidden state as zeros. To save memory and avoid
noises, we only input the frames several seconds before the
action occurring time� s. Following [4], we take the frames
from (� s � 4)s to (� s � 2:5)s as the input for the encoder.
Decoder.The decoder is an LSTM model that performs antic-
ipation. It takes the observed information extracted from the
EncodingRNN as the initial hidden states, and then recurrently
takes the last observed frame as input. Based on the last output
of the DecodingRNN, we use a fully-connected layer as the
classi�er for the action anticipation prediction.

B. Bridging the gap between past and future

In the egocentric action anticipation task, it is hard to
train a meaningful model due to the clear gap between past
observations and future action. We alleviate this issue by
decomposing the long-time prediction into a series of short-
term forecasts. Then we design ImagineRNN to �ll in the
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Fig. 2. The framework of our method. ImagineRNN predicts the next visual representation based on past observations in a step-wise manner. The imaginary
features are input to the decoder to improve the anticipation performance. We propose to better optimize the ImagineRNN with the contrastive learning task.
We further improve the ImagineRNN by forecasting the features difference between frames, instead of generating the entire frame representations.

gap by producing the future visual representation. In this way,
the long-time reasoning is simpli�ed by predicting the action
based on past observations and future imaginary data.

Speci�cally, we break down theT seconds anticipation into
several short-term anticipations with each lasting� seconds
(� < T ). Given the visual featuref t at timet, the ImagineRNN
is designed to generate the future visual featuref̂ t +1 by,

h I
t +1 = ImagineRNN (f t ; h I

t ); (2)

f̂ t +1 = � (h I
t +1 ); (3)

whereh I
t is the hidden state of ImagineRNN at time stept.

� (�) is a transformation layer that maps the hidden state space
to the visual feature space. The generated visual featuref̂ t +1

is supposed to �ll in the gap between the past and future.
In the framework, we input the output of ImagineRNN to
the decoder to predict future action. Thus the prediction of
ImagineRNN should be consistent with the ground truth visual
content. Next, we illustrate how we optimize the ImagineRNN
model ef�ciently in the action anticipation framework.

C. Optimization of ImagineRNN

In egocentric videos, the action states usually change very
quickly. Thus the predicted future from ImagineRNN should
be substantially different along with the anticipation time.
The commonly used regression loss functions, such asl2
loss, can hardly optimize the ImagineRNN to perceive the
changes of action states. Differently, we propose a more
effective optimization for the ImagineRNN by introducing the
contrastive learning task, where the model is asked to pick
the correct future states from lots of distractors. We use Noise
Contrastive Estimation (NCE) [51] to encourage the predicted
future featurêf t +1 to be close to the ground truth future state
f̂ t +1 . Compared to the regression losses, NCE does not require
to resolve the low-level stochasticity strictly. Speci�cally, for
the imagined future featurêf t at timet, the only positive target

is the ground truth featuref t . We then build a set of candidates
as distractors for the ground truth featuref t at time t.

Distractors. The distractors contain easy negatives and hard
negatives. The easy negatives contain the frame features from
the other videos instead of the target video. We use the frame-
level features from the other videos in the same mini-batch
as the easy negatives for simplicity in the calculation. These
candidates are easy to distinguish since these frames usually
look different from the current video.

The hard negatives contain the frames from the same video
but at different time steps,f 0

t wheret0 6= t. These candidates
are hard to distinguish since they are very close to the ground
truth frame featuref t . Distinguishing the hard negatives
encourages ImagineRNN to generate essential intermediate
features and capture the change of a series of future states.

Contrastive Learning. With the positive targets and these
distractors, we can take the contrastive learning as a proxy
task for better optimizing the ImagineRNN. Inspired by recent
representation learning work [52], [53], we �rst calculate the
cosine similarity between the predicted feature and the can-
didates,v T

j f̂ t , wherev j denotes thej -th distractors. Here we
enforce all vectors to be L2-normalized feature embeddings,
i.e., jjv j jj = 1 , jj f̂ t jj = 1 , and jj f t jj = 1 . Thus we have the
following objective function at the time stept,

L c = � log
exp(f t

T f̂ t =� )
P

j exp(v j
T f̂ t =� ) + exp( f t

T f̂ t =� )
; (4)

where� is a temperature parameter that controls the concen-
tration level of the distribution. Higher� leads to a softer
probability distribution. We set� = 0 :2 in our experiments.

With Eqn. (4), we optimize the ImagineRNN with a cross-
entropy loss (negative log-likelihood), instead of the com-
monly used regression loss functions. During optimization,
the loss function encourages the predicted featuref̂ t to be
close to ground truth targetf t , and also push the predicted
feature f̂ t to be distinct from these distractors. Thus the


