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Unsupervised Person Re-identification via
Cross-camera Similarity Exploration

Yutian Lin, Yu Wu, Chenggang Yan, Mingliang Xu, and Yi Yang

Abstract—Most person re-identification (re-ID) approaches are
based on supervised learning, which requires manually annotated
data. However, it is not only resource-intensive to acquire identity
annotation but also impractical for large-scale data. To relieve
this problem, we propose a cross-camera unsupervised approach
that makes use of unsupervised style-transferred images to
jointly optimize a convolutional neural network (CNN) and the
relationship among the individual samples for person re-ID.

Our algorithm considers two fundamental facts in the re-
ID task, i.e., variance across diverse cameras and similarity
within the same identity. In this paper, we propose an iterative
framework which overcomes the camera variance and achieves
across-camera similarity exploration. Specifically, we apply an
unsupervised style transfer model to generate style-transferred
training images with different camera styles. Then we iteratively
exploit the similarity within the same identity from both the
original and the style-transferred data. We start with consid-
ering each training image as a different class to initialize the
Convolutional Neural Network (CNN) model. Then we measure
the similarity and gradually group similar samples into one class,
which increases similarity within each identity. We also introduce
a diversity regularization term in the clustering to balance the
cluster distribution. The experimental results demonstrate that
our algorithm is not only superior to state-of-the-art unsuper-
vised re-ID approaches, but also performs favorably compared
with other competing unsupervised domain adaptation methods
(UDA) and semi-supervised learning methods.

I. INTRODUCTION

Person re-identification (re-ID) aims at matching a target
person in a set of gallery pedestrian images. In recent years, the
widespread adoption of deep convolutional neural networks
(CNN) has led to impressive progress in the field of re-ID [1],
[2], [3], [4], where most of them are supervised approaches.
However, supervised re-ID methods require intensive manual
labeling, which is expensive and not applicable to real-world
applications. To solve the scalability issue, we are motivated
to study unsupervised approaches for the person re-ID task.

Traditional unsupervised methods focus on hand-crafted
features [5], [6], [7], salience analysis [8], [9] and dictionary
learning [10]. These methods produce much lower perfor-
mance than supervised methods and are not applicable to
large-scale real-world data. In recent years, some unsupervised
domain adaptation methods (UDA) [11], [12], [13], [14]
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Fig. 1. Examples in Market-1501 with different cameras. The Market-1501
dataset contains 6 different cameras. Under different cameras, the images of
the same pedestrian have different background, illumination, viewpoint, etc.

are proposed upon the success of deep learning [15], [16].
These methods usually learn an identity-discriminative feature
embedding on the source dataset, and transfer the learned
features to the unseen target domain. However, these methods
require a large amount of annotated source data, which cannot
be regarded as pure unsupervised approaches. Recently, in
our conference version [17], a bottom-up clustering method
is proposed to train the model and apply bottom-up clustering
iteratively to achieve impressive performance. However, this
method does not make use of the variance between diverse
cameras. Compared with [17], we learned the image style of
different cameras, which helps us to associate the images from
different cameras of the same identity.

Without the manual annotation, there are two main chal-
lenges: (i) overcoming the variance of image style caused by
different cameras, e.g. viewpoint, illumination. (ii) exploiting
similarity within each identity. As shown in Fig. 1, images of
the same person often undergo intensive appearance changes
caused by variations of different camera views. To address the
challenge of camera variations, we generate style-transferred
images and use these images for similarity exploration to elim-
inate the effects of camera differences. Specifically, following
[18], we learn the camera style transfer model with StarGAN
[19]. With the StarGAN model, for a training image captured
by a certain camera, we can generate several new training
samples under the style of the other cameras. In this manner,
the training set is a combination of the original training
images and the style-transferred images. Then, to exploit the
similarity within each identity, we start with viewing individual
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images as exemplars to initialize the network, i.e., each image
or transferred image belongs to a distinct cluster. We then
gradually incorporate similarity within identities by bottom-
up clustering, which is to merge similar images (clusters) into
one cluster. Finally, during the iterative training and clustering
procedure, our framework exploits the cross-camera similarity
of the identities to learn discriminative features.

In order to better adapt to the unsupervised setting, we
refine the framework with some specific design: (i) We adopt
repelled loss to optimize the CNN model without labels. In
the beginning, the repelled loss directly learns to discriminate
between individual images that maximize the diversity among
training images. As the images are merged into clusters, the
repelled loss learns to minimize total intra-cluster variance and
maximize the inter-cluster variance. (ii) In practice, different
identities should have a similar probability to be captured by
cameras, and thus the image number for different clusters
should be balanced. To enforce this property, we incorporate
a diversity regularization term in the clustering procedure.

The experimental results demonstrate that our approach is
superior to the state-of-the-art methods on three large scale re-
ID datasets. Moreover, the one-shot and UDA re-ID methods
utilize more annotation than ours, whereas our approach also
obtains a higher performance than them.

Our contributions are summarized in four-fold:
• A camera style transfer model is adopted to generate

images under different styles to decrease the camera
variance. The transferred images allow us to easily divide
images under different cameras into one class.

• An iterative framework is proposed to solve the unsuper-
vised re-ID problem. By gradually exploiting the similar-
ity within each identity across cameras, our framework
can learn robust and discriminative features.

• The repelled loss is proposed to optimize the model
without labels. It directly optimizes the cosine distance
among each individual sample / cluster, which facilitates
the model to exploit the similarity within each cluster and
maximize the diversity among each identity.

• A diversity regularization term is proposed to balance
the image number in each cluster. It makes the clustering
results align with the real world distribution.

II. RELATED WORK

Most re-ID methods are in a supervised manner, in which
sufficient labeled person pairs across cameras are given. These
methods mainly focus on designing feature representations
[20] or learning robust distance metrics [21], [6]. Recently,
deep learning methods achieve great success [2], [3], [22],
[23], [4] by simultaneously learning the image representations
and similarities. In this paper, we focus on the unsupervised
person re-identification, and we do not discuss more super-
vised methods here.

A. Unsupervised Person Re-identification

The existing fully unsupervised methods usually fall into
three categories, designing hand-craft features [5], [6], [7],
exploiting localized salience statistics [8], [9] or dictionary

learning based methods [10], [24]. However, it is a chal-
lenging task to design suitable features for images captured
by different cameras, under different illumination and view
condition. In [25], camera information is used to learn view-
specific projection for each camera view by jointly learning
the asymmetric metric and seeking optimal cluster separations.
These methods are unable to explicitly exploit the cross-view
discriminative information without pairwise identity labels.
Thus the performance of these methods is much weaker
than supervised methods. Recently, Lin et al. [17] propose a
bottom-up clustering framework that jointly optimize a convo-
lutional neural network (CNN) and the relationship among the
individual samples. However, [17] neglect the style variance
caused by different cameras. In this paper, we introduce a style
transfer model to generate images of other camera styles and
use these generated images to exploit cross-camera similarity
within each identity. Our framework is beneficial in achieving
camera-invariant embeddings.

There are also some recent works [26], [27], [28], [29]
focusing on the unsupervised video-based re-ID. However,
these methods require some very useful annotations of the
dataset, i.e., the total number of identities and their appearance.
To conduct experiments, they annotate each identity with a
labeled video tracklet, which only reduces part of the anno-
tation workload. As discussed in [30], these approaches are
actually the one-example methods. In [31], an unsupervised
graph association method is proposed to learn the view-
invariant representations from the video pedestrian tracklets.
This method suspects images under the same camera to be
tracklets and thus have the same label. Different from these
methods, our work focuses on the fully unsupervised setting
in which there is no identity annotation on the dataset.

B. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [32] have
achieved impressive success in many tasks, including image-
to-image translation [33], [34], [19], style transfer [35], [36]
and cross domain image generation [37]. In [33], a condi-
tional GAN is proposed to learn a mapping from input to
output images for image-to-image translation. However, this
method requires pairs of corresponding images for training.
To overcome this problem, Liu et al. [38] propose a cou-
pled generative adversarial network (CoGAN) by employing
weight-sharing networks to learn a joint distribution across
domains. In [34], CycleGAN is proposed based on [33] to
learn the image translation between two different domains
without paired samples. Later in [19], StarGAN is proposed,
which allows image translations among multiple domains with
a single model. In this paper, we take the model of StarGan
[19] to generate images in different camera styles.

Gan is also widely applied in re-ID field. In [39], a baseline
DCGAN model [40] is adopted to generate unlabeled data,
which are further mixed with the labeled real training images
for simultaneous semi-supervised learning. In [41], [18], [42]
the source data are transferred to styles of the target cam-
eras and directly learns the deep re-ID model with labeled
transferred samples in a supervised way. Different from these
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Fig. 2. Examples of style-transferred images on the Market-1501 dataset and the DukeMTMC-reID dataset. The two datasets are captured by 6 and 8 cameras,
respectively. With the camera style transfer model, we can obtain additional images under a different style of the illumination, texture, and background, etc.

works, we generate style-transferred images for unsupervised
re-ID task, where the supervision is the exploited similarity
between original and transferred training images.

C. Unsupervised Domain Adaptation
Recently, unsupervised domain adaptation (UDA) is adopted

in the unsupervised re-ID task [11], [43], [44], [45], where
information from an external source dataset is utilized. In [46],
a PatchNet pre-trained on the source dataset is used to generate
pedestrian patches. A network is then designed to pull similar
patches together and push the dissimilar patches. In [47], a soft
multilabel is learned for each unlabeled person by comparing
the unlabeled person with a set of known reference persons
from the source domain. In [48], the model is first pre-trained
on MSMT17 [49], then the cross-camera matching and intra-
camera matching are applied to get the ranking result. In [14],
the theoretical guarantees of unsupervised domain adaptive re-
ID are introduced. This method first trains an encoder on the
source dataset, and then a self-training scheme is adopted to
iteratively employs clustering for unlabeled target data and
trains the encoder with the triplet loss. In each iteration, [14]
calculates the distance metric between the images in the target
domain and images in the target and source domain with the
time complexity of O(N2) and O(N ∗M), while our method
calculates the distance metric between the real-real images and
the real-fake images with the time complexity of O(N2) and
O(L ∗ N2). Although our methods and [14] are both in an
iterative clustering scheme, [14] is in a UDA manner, while
our method does not utilize any annotated source domain for
training or clustering measurement.

Some methods [13], [49] proposed to learn a similarity
preserving generative adversarial network based on CycleGAN
[34] to translate images from the source domain to the target
domain. In this way, high-quality person images are generated,
and person identities are kept and the styles are effectively
transformed. The translated images are utilized to train re-ID
models in a supervised manner. These methods assume that the
label of the source domain is available and apply the learned
discriminative model to the target domain. In this work, we
propose a fully unsupervised re-ID framework that gradually
exploits the similarity within each identity.

III. PROPOSED METHOD

A. Problem definition

Given a training set Xtrain = {x1, x2, ..., xN} of N
images, our goal is to learn a feature embedding function
φ(θ;xi) from Xtrain without any manual annotation, where
parameters of φ are collectively denoted as θ. This fea-
ture embedding function can be applied to the testing set,
Xt = {xt1, xt2, ...xtNt} of Nt images, and the query set
Xq = {xq1, x

q
2, ...x

q
Nq
} of Nq images. During the evaluation,

we use the feature of a query image φ(θ;xqi ) to search the
similar image features from the testing set. The query result is
a ranking list of all testing images according to the Euclidean
distance between the feature embedding of the query and
testing data, i.e., d(xqi , x

t
i) = ‖φ(θ;xqi ) − φ(θ;xti)‖. The

feature embeddings are supposed to assign a higher rank to
similar images and keep the images of a different person a
low rank.

To learn the feature embedding, traditional methods usually
learn the parameters with manual annotations. That is, each
image xi is associated with a label yi, where 1 ≤ yi ≤ k and
k is the number of identities. A classifier f(w;φ(θ;xi)) ∈ Rk
parameterized by w is used to predict the identity of the image
xi. The classifier parameter w and the embedding parameter
θ are jointly optimized by the following objective function:

min
θ,w

N∑
i=1

`(f(w;φ(θ;xi)), yi), (1)

where ` is the softmax cross entropy loss. However, yi is not
available in the unsupervised setting, and it is challenging
to find another objective function that can learn a robust
embedding function φ.

B. Camera Style Transfer Model

Without the manual annotation, we aim to exploit the cross-
camera similarity from the training data as the supervision
information. However, the same identity could look totally
different under different cameras. To tackle the camera in-
variance, we propose to generate style-transferred images that
preserve the person identity and reflect the style of another
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Fig. 3. The pipeline of the proposed approach. It consists of two main components: 1) camera style transfer model, which generates style-transferred images
together with the original training images for training; 2) iterative re-ID framework, which gradually exploits the similarity between the original and transferred
images and gathers the images into a larger cluster to decrease the number of classes.

camera. In this paper, we employ StarGAN [19] to learn
camera style transfer model in the unlabelled training set.
Different from [42] that adopts CycleGAN [34] for image
translation, StarGAN allows us to train one model for the
translations between multiple camera styles.

1) StarGAN review: The goal of StarGAN [19] is to learn a
mapping function G(x, c)→ y that translates an input image x
into an output image y conditioned on the target domain label
c. The image style of image x is learned to be indistinguishable
from the random generated domain c using an adversarial loss.
Meanwhile, the discriminator D is adopted to distinguish if an
image is translated fake image, and classify the real image to
its corresponding domain, D : x → {Dsrc(x), Dcls(x)}. The
overall loss function is calculated as:

V (G,D, c, c′) = VGAN (D,G, c, c′) + λVcyc(G, c, c
′), (2)

where c′ is the original domain label of the image,
VGAN (G,D, c, c′) is the loss functions for the mapping func-
tions G and for the discriminators D, Vcyc(G, c, c′) is the cycle
consistency loss that forces G(G(x, c), c′) ≈ x, in which each
image can be reconstructed after a cycle mapping. λ balances
the importance between VGAN and Vcyc.

2) Our practice: In our work, the images captured by
different cameras are considered as different domains. Given
a re-ID dataset containing images captured by L different
cameras, we aim to learn style transfer models for each camera
pair with StarGAN. In conclusion, for a dataset captured by
L cameras, we generate L − 1 images under the style of the
corresponding cameras for each training data. For a training
data xi, we define a support set, Xcam

i = {x1i , x2i , ..., xLi },
which is the combination of the original training image and
the style-transferred fake images. The examples of generated
style-transferred images are shown in Fig. 2.

C. Iterative Re-ID Framework

We propose an iterative re-ID framework to exploit the
cross-camera unlabeled data gradually and steadily. As shown
in Fig. 3, after generating the style-transferred images as
external training data, we apply two components iteratively:
(i) A network trained with a repelled loss to let the cluster

centers repelled by each other. (ii) A clustering procedure in
the feature embeddings space to merge existing clusters.

1) Network with Repelled Loss: Since we do not have
ground truth labels, we assign each image to a different cluster
initially, i.e., {ŷi = i | 1 ≤ i ≤ N}, where ŷi is the
cluster index for xi and is dynamically changed. Note that,
despite we have more transferred images for augmentation, the
number of images for training in each epoch is not increased.
Instead, for each original unlabeled training image, we use the
pedestrian image under a randomly selected camera, which
could be either the original image or the stale transferred
image. In this way, in the initialization, the network learns to
recognize each training sample across cameras instead of the
identities and thus obtain an initial discriminative ability. In
the later iterations, we gradually incorporate similarity within
identities by grouping similar images into clusters. The cluster
ID is then used as the training label, and the network is
trained to minimize total intra-cluster variance and maximize
the inter-cluster variance. We define the probability that image
x belongs to the c-th cluster as,

p(c|x,V ) =
exp(V T

c v/τ)∑C
j=1 exp(V

T
j v/τ)

, (3)

where v = φ(θ;x)
||φ(θ;x)|| , V ∈ RC×nφ is a lookup table that stores

the feature of each cluster, Vj is the j-th colum of V , and
C is the number of clusters at the current stage. At the first
training stage, C = N . At the following stages, our approach
will merge similar images into one class, and C will gradually
decrease. τ is a temperature parameter [50] that controls the
softness of probability distribution over classes. Following
[51], we set τ = 0.1 in this paper. In the forward operation,
we compute cosine similarities between data xcami and all the
other data by V T ·vcami . During backward, we update the ŷi-
th column of the table V by Vŷi ← 1

2 (Vŷi + v
cam
i ). Finally,

we minimize the repelled loss, which is formulated as,

L = − log(p(ŷi|xi,V )). (4)

During the optimization, Vj will contain the information
of all images within the j-th cluster. It can be considered
as a kind of “centroid” of this cluster. We do not directly
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Fig. 4. The cluster merging procedure. Each circle denotes an individual
image for training. K denotes the number of clusters in each iteration.
After the current training iteration, we apply clustering based on the feature
similarity of the current stage. By applying bottom-up clustering, individual
pedestrian samples are gathered to represent an identity.

calculate the centroid feature in each training stage due to
the high time complexity. The lookup table V can avoid
exhaustive computation of extracting features from all data at
each training step. The proposed objective has two advantages.
First, it can maximize the cosine distance between each image
feature vi and each centroid features Vj 6=ŷi . Second, it can
minimize the cosine distance between each image feature vi
and the corresponding centroid feature Vj=ŷi . With these two
advantages, our network achieves the discriminative property
without any annotation.

2) Cluster Merging: After the first training stage, the
training samples are prone to be away from each other in the
learned feature space. However, the style-transferred images
and images of the same identity are usually visually similar
and should be close, which we call similarity. As shown in
4, we apply bottom-up clustering on the CNN features to
gradually exploit the similarity between clusters and merge the
closest clusters into a larger one. In this way, the images of
the same identity under the same camera style are likely to be
merged into one cluster. The transferred images are also easy
to be merged with the original image. Then we can achieve
the goal of grouping the images across cameras into one class.

As shown in 4, in the start, each image is treated as an
individual cluster. Then pairs of clusters are merged into one
by measuring their similarity. In order to decide which clusters
should be merged, we calculate the shortest distance between
images in two clusters as the dissimilarity value D(A,B)
between cluster A and cluster B. The advantage is that the
transferred images and images of the same identity under the
same camera style are visually alike and tend to be merged into
one cluster under this criterion, which guarantees the accuracy
of merged images. D(A,B) is formulated as:

Ddistance(A,B) = min
xa∈A,xb∈B

d(xa, xb), (5)

where d(xa, xb) is defined as the Euclidean distance between
the feature embeddings of two images, i.e., va and vb. Specif-
ically, d(xa, xb) = ‖va − vb‖.

At each iteration, we aim to reduce m clusters. We define
m = N × mp, where mp ∈ (0, 1). Here mp is the merge

Algorithm 1 The Unsupervised Framework
Require: Unlabeled data: X = {x1, x2, ...xN};

Support set for each data xi: Xcam
i = {x1i , ..., xLi };

Merge percent: mp ∈ (0, 1); CNN model: φ(·;θ0).
Ensure: Best CNN model φ(·;θ∗).

1: Initialize: Cluster label Y = {ŷi| 1 ≤ i ≤ N}
2: Number of cluster C = N
3: Number of merging image m = dmp ∗ Ce
4: while C > m do
5: Train CNN model φ(x;θ) with X , each Xcam

i and Y
6: Clustering with m:
7: C ← C −m
8: Update Y with the new cluster labels
9: Initialize the lookup table V with new dimensions

10: Evaluate on the validation set → performance P
11: if P > P ∗ then
12: P ∗ = Pt
13: Best model = φ(x;θ)
14: end if
15: end while

percent, that denotes the speed of cluster merging. Each
time, the clusters with the shortest distance are merged. The
number of clusters is initialed as C = N , i.e., the number of
training samples. After t iterations, the number of clusters is
dynamically decreased to C = N − t×m.

3) Dynamic Network Updating: The framework iteratively
trains the network and merges the clusters. The clustering
results are then fed to the network for further updating. The
whole updating process is described in Algorithm 1. In this
way, the cross-camera similarity is exploited gradually by
clustering, and the network is gradually trained with more
supervision to be more discriminative. The number of clusters
is initialized as the number of training images. After each
cluster merging, the labels of the training images are re-
assigned as the new cluster ID. The memory layer of the
optimizer is re-initialized to zero vector to avoid getting stuck
in local optima. We constantly train the network until we
observe a performance drop on the validation set. The model
that produces the best result on the validation set is adopted
as the final model.

D. Clustering Strategy

1) Clustering constraint: To merge the clusters, distances
between each image are calculated as illustrated in Eq. (5).
However, with the style transfer model, the training set is
enlarged L times with generated style-transferred fake images.
The distances between images are then can be divided into
three types: “real-real”, “real-fake”, and “fake-fake”. The cam-
era variations could be reduced by integrating the “real-fake”
link during clustering. However, merging two fake images
will introduce noise into the framework, and calculating the
distance between fake images is also time-consuming. In this
work, we adopt a clustering constraint that we only consider
the “real-real” and “real-fake” relations during clustering,
while neglecting the “fake-fake” relations. As shown in Fig.
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Fig. 5. The different clustering strategies. The solid circles represent the
original training data, while the hollow circles represent the style-transferred
images. Circles of the same color represent images from the same cluster.
Three clustering strategies are shown: (a) Without clustering constraint. (b)
Without diversity regularization. (c) Our strategy.

5 (a) and (b), with calculating the distance between “fake-
fake” images, the two green circles are merged into one cluster
because they are the closest. However, with the clustering con-
straint we merges the blue and yellow circles. The dissimilarity
between two clusters D(A,B) can be formulated as:

Ddistance(A,B) = min
xa∈A,xb∈B,xa /∈Xcamorxb /∈Xcam

d(xa, xb),

(6)
2) Diversity Regularization: With the clusters being

merged, the number of classes is decreasing, and the number
of images in the clusters is increasing. Although we do not
know the exact number of images in each identity, we can
assume that the images are evenly distributed to the identities,
and different identities should be scattered in different clusters.
This implies that one cluster should not contain much more
images compared to other clusters.

To avoid one cluster being redundant and boost the small
clusters to merge together, we incorporate a diversity regular-
ization term into the distance criterion.

Ddiversity(A,B) = |A|+ |B|, (7)

where |A| denotes the number of samples belonging to the
cluster A. Then, the final dissimilarity is calculated as:

D(A,B) = Ddistance(A,B) + λDdiversity(A,B), (8)

where λ is a parameter that balances the impact of distance and
regularization. The reason for adding a diversity regularization
term is that, there exist some visually similar identities wearing
almost the same clothes. Without the regularization term, the
algorithm might merge these similar but different identities
into one tremendous cluster by mistake. We tend to merge
small clusters, unless the distance d(xa, xb) is small enough.
This procedure is illustrated in Fig. 5 (b) and (c). (b) shows
the cluster merging result without diversity regularization: the
yellow and blue images have the shortest distances (neglecting
the distance between two fake images), and are then merged
into one cluster. However, the yellow and blue clusters are too
large and should not be merged. In our strategy, the blue and
green clusters are merged instead.

IV. EXPERIMENTAL RESULTS

A. Datasets

The Market1501 dataset [22] is a large-scale dataset
captured by 6 cameras for person re-ID. It contains 12,936
images of 751 identities for training and 19,732 images of 750
identities for testing. With the style transfer model, 5 images in
the corresponding camera style are generated for each training
data. Finally, we get a training set of 77,616 images.

The DukeMTMC-reID dataset [39] is a subset of the
DukeMTMC dataset [54]. It contains 1,812 identities captured
by 8 cameras. A number of 1,404 identities appear in more
than two cameras, and the rest 408 IDs are distractor images.
Using the evaluation protocol specified in [39], the training and
testing set both have 702 IDs. There are 2,228 query images,
16,522 training images and 17,661 gallery images. With the
style transfer model, 7 images in the corresponding camera
style are generated for each training data. Finally, we get a
training set of 132,176 images.

The MSMT17 dataset [49] is the largest re-ID dataset,
which contains 126,441 images of 4,101 identities captured
by 15 cameras. In practice, 32,621 images of 1,041 identities
are used for training and 93,820 images of 3,060 identities.
With the style transfer model, 14 images in the corresponding
camera style are generated for each training data.

B. Experimental Settings

Evaluation Metrics. For person re-ID, we use the Cumu-
lative Matching Characteristic (CMC) curve and the mean
average precision (mAP) to evaluate the performance of each
method. For each query, its average precision (AP) is com-
puted from its precision-recall curve. The mAP is calculated
as the mean value of average precision across all queries. We
report the Rank-1, Rank-5, Rank-10 scores to represent the
CMC curve. These CMC scores reflect the retrieval precision,
while mAP reflects the recall.

Implementation Details. For the style transfer model, fol-
lowing the training strategy in [18], we train StarGAN models
for Market-1501, DukeMTMC-reID and MSMT17, respec-
tively. During training, we adopt random flipping and random
cropping. We train the generator and discriminator for 200
epochs, and the learning rate is 0.0001 at the first 100 epochs
and linearly decays to zero in the remaining 100 epochs.
Finally, for each training image, we generated L − 1 (5 for
Market-1501, 7 for DukeMTMC-reID and 14 for MSMT17)
style-transferred images with their original image for training.

For the re-ID network, we adopt ResNet-50 as the CNN
backbone. We initialize it by the ImageNet [55] pre-trained
model with the last classification layer removed. For all the
experiments if not specified, we set the number of training
epochs in the first stage to be 20, and the training epochs in
later iterations to be 2. We set the dropout rate to be 0.5, mp
to be 0.05 and λ in Eq. (8) to be 0.03. For Market-1501 and
DukeMTMC-reID, we set the batch size to be 16, and for
MSMT17, we set the batch size to be 64. We use stochastic
gradient descent with a momentum of 0.9 to optimize the
model. The learning rate is initialized to 0.1 and changed
to 0.01 after 15 epochs. For Market-1501, DukeMTMC-reID
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON MARKET-1501 AND DUKEMTMC-REID. “TRANSFER” DENOTES THE METHODS USE

INFORMATION FROM ANOTHER RE-ID DATASET WITH FULL ANNOTATIONS. “ONE-EXAMPLE” MEANS THE METHODS USE THE ONE-EXAMPLE
ANNOTATION, IN WHICH EACH PERSON IN THE DATASET IS ANNOTATED WITH ONE LABELED EXAMPLE. ∗ MEANS RESULTS REPRODUCED BY US.

Methods Setting Market-1501 DukeMTMC-reID
rank-1 rank-5 rank-10 mAP rank-1 rank-5 rank-10 mAP

BOW [22] Unsupervised 35.8 52.4 60.3 14.8 17.1 28.8 34.9 8.3
OIM∗ [51] Unsupervised 38.0 58.0 66.3 14.0 24.5 38.8 46.0 11.3
UMDL [12] Transfer 34.5 52.6 59.6 12.4 18.5 31.4 37.6 7.3
PUL [11] Transfer 44.7 59.1 65.6 20.1 30.4 46.4 50.7 16.4
EUG∗ [30] One-Example 49.8 66.4 72.7 22.5 45.2 59.2 63.4 24.5
Progressive [52] One-Example 55.8 72.3 78.4 26.2 48.8 63.4 68.4 28.5
SPGAN [13] Transfer 58.1 76.0 82.7 26.7 46.9 62.6 68.5 26.4
TJ-AIDL [43] Transfer 58.2 - - 26.5 44.3 - - 23.0
Ours (w/o clustering) Unsupervised 39.1 60.2 69.1 13.9 29.2 44.4 51.7 10.7
Ours (w/o style transfer) Unsupervised 61.0 71.6 76.4 30.6 40.2 52.7 57.4 21.9
Ours (w/o diversity regularization) Unsupervised 63.6 78.1 83.3 28.3 49.0 60.1 64.3 24.1
Ours (w/o clustering constraint) Unsupervised 70.2 80.1 85.9 38.8 53.9 66.2 71.6 28.5
Ours Unsupervised 73.7 84.0 87.9 38.0 56.1 66.7 71.5 30.6

TABLE II
PERSON RE-IDENTIFICATION PERFORMANCES ON THE MSMT17 DATASET.

Methods rank-1 rank-5 rank-10 mAP
OIM∗ [51] 7.3 14.4 18.5 1.7
PTGAN [49] 11.8 - 27.4 3.3
ENC (Market-1501) [53] 25.3 36.3 42.1 8.5
Ours (w/o clustering) 15.7 24.5 29.0 3.8
Ours (w/o StyleTrans) 26.4 35.2 39.4 9.2
Ours 31.4 41.4 45.7 9.9

and MSMT17, we validate the network on DukeMTMC-reID,
Market-1501 and Market-1501, respectively.

C. Comparison with the State of the Art

The comparisons with the state-of-the-art algorithms on
Market-1501 and DukeMTMC-reID are shown in Table I,
and the performances on MSMT17 are shown in Table II.
Note that the performances in [12] are reproduced by [11]
and we borrow the numbers to our table. On Market-1501,
we obtain the best performance among the compared methods
with rank-1 = 73.7%, mAP = 38%. Compared to the state-
of-the-art unsupervised method [51], we achieve 35.7 points
(absolute) and 24 points improvement in rank-1 accuracy and
mAP, respectively. On DukeMTMC-reID, we achieve the best
accuracy with rank-1 = 56.1%, mAP = 30.6%. Compared to
[51], our method achieves 31.6% and 19.3% point of improve-
ment of rank-1 accuracy and mAP, respectively. On MSMT17,
we obtain the best performances of rank-1 = 31.4%, mAP =
9.9%, which beat [51] by 24.1 points and 8.2 points on rank-1
and mAP, respectively. The impressive performance indicates
that the style-transferred images eliminate the variance of
different cameras by merging with the origin images during
clustering, and the cluster merging effectively exploits the
similarity from the instances for better supervision.

We also compare our method to the state-of-the-art UDA
methods in Table I and Table II. Although these methods
utilize external images and human annotations, our method
with zero annotation still surpasses them by a large margin.
On Market-1501, our method outperforms the state-of-the-art
UDA method [43] by 15.5 points and 21.4 points in rank-1
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Fig. 6. Performance curve with different values of the diversity regularization
parameter λ on Market-1501.

accuracy and mAP, respectively. On DukeMTMC-reID, com-
paring with SPGAN [13], the performance gain are 9.2% and
4.2% in rank-1 accuracy and mAP, respectively. On MSMT17,
our performances are 6.1 points and 1.4 points higher than
ENC [53], which use Market-1501 as the source domain in
rank-1 accuracy and mAP, respectively. The major reason is
that the UDA methods can not directly learn discriminative
information from the target dataset. The learned pattern and
relation of the source dataset can not exactly be adopted by
the source dataset. In comparison, our method gradually mines
the similarity between the training images, that directly learn
to discriminate the target dataset.

D. Ablation Studies

1) Without clustering: We show the result of the baseline
without clustering in Table I Ours (w/o clustering). Without
clustering, we train the network for 60 iterations. The learning
rate is initialized to 0.1 and changed to 0.01 after 40 epochs.
We observe a rank-1 accuracy of 39.6% and 29.2% for Market-
1501 and DukeMTMC-reID, respectively, which have a large
margin with the proposed method. The major reason is that
during the bottom-up clustering, the similarity among images
is exploited, which provides more supervision information for
further network training.
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TABLE III
EVALUATION OF THE MERGE PERCENT mp ON MARKET-1501.

Method rank-1 rank-5 rank-10 rank-20 mAP
mp = 0.01 74.1 84.6 88.1 90.6 38.4
mp = 0.05 73.7 84.2 87.7 90.8 38.7
mp = 0.1 71.7 83.4 87.3 90.7 36.8
mp = 0.2 66.8 80.5 85.0 89.0 31.5
mp = 0.3 53.3 72.0 78.4 84.4 22.0

2) Without style transfer: We show the result of the baseline
without style transfer in Table I Ours (w/o style transfer).
We observe a rank-1 accuracy of 66.2% and 47.4% for
Market-1501 and DukeMTMC-reID, respectively. In Table II
Ours (w/o StyleTrans), we observe an improvements with
camera-style transferring of 5 points in rank-1 accuracy. The
impressive improvement indicates that the style-transferred
images effectively eliminate the variance of different cameras
by merging with the origin images during clustering.

3) Without clustering constraint: As shown in Table I Ours
(w/o clustering constraint), the rank-1 accuracy is 70.2% and
53.9% for Market and DukeMTMC-reID, respectively, which
is about 3 points lower than our method. Note that calculating
the distance between “fake-fake” images is time-consuming,
and will introduce noise into the re-ID system. Our method
only considers the “real-real” and “real-fake” relations during
clustering that achieve better performance while reducing a
large calculation workload.

4) The Impact of Diversity Regularization: The results with
and without the diversity regularization item are shown in
Table I. The diversity regularization provides a performance
improvement on both datasets. Specifically, on Market-1501,
the diversity regularization item improves the rank-1 accuracy
and mAP by 10.1 points and 9.7 points, respectively. On
DukeMTMC-reID, the rank-1 accuracy and mAP are improved
7.1 points and 6.5 points, respectively. We suspect that without
the diversity regularization, two similar identities may be
easily merged into one cluster by mistake. With the diversity
regularization term, we tend to merge small clusters first. The
diversity regularization parameter λ in Eq. (8) balances the
cluster size and distance. We evaluate different values for the
parameter λ in Fig. 6. As λ increases from 0 to 0.003, the rank-
1 accuracy on Market-1501 increases from 63.6% to 73.7%.
If we set λ to be greater than 0.003, the too large diversity
regularization term would lead to a negative effect.

5) Effect of mp: For each iteration, mp × N clusters are
merged into a greater cluster for updating the model. To show
the effect of the merge percent mp we perform experiments
with different mp on Market-1501. The result is shown in
Table. III. We observe that our method always achieves better
performance when we merge fewer clusters in each iteration.
This is because the performance of the trained CNN model
highly depends on the reliability of the training label. If we
merge the clusters at a slow speed, the merged clusters will
tend to be of one identity. However, if we merge the clusters
at a fast speed, some images of different identities will be
merged into one cluster that can further harm the network. As
a result, we use mp = 0.05 in this paper.
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Fig. 7. The rank-1 accuracy and mAP on Market-1501 after each iteration.

6) Analysis over Cluster Merging: We show the perfor-
mance of re-ID during iterations on Market-1501 in Fig. 7.
Through iterations, the rank-1 accuracy and mAP are both
increasing in the first 18 itertions, and we observe a slight
performance drop in the last iteration. During the first 18
iterations, the rank-1 accuracy increases from 36.9% to 73.7%,
and mAP increases from 13.2% to 38%. We observe that
both the improvement of the performance and the reduction
of the clusters are continuous and gradual. It indicates that
our method gradually learns from the diversified images to
generate a more discriminative feature representation.

E. Visualization

To further understand the discriminative ability of our unsu-
pervised learned feature, we utilize t-SNE [56] to visualize the
feature embeddings of the merged clusters by plotting them to
the 2-dimension map. As illustrated in Fig. 8, from iteration
0 to iteration 6, we observe an obvious and constantly points
gathering of the same color, which indicates that we gradually
learn a more discriminative feature representation. We can
also observe that the number of clusters is continuously
decreasing. On iteration 6, the images of the same identity
usually gather together, which represents the learned similarity
within identities.

V. CONCLUSIONS

In this paper, we propose to tackle the unsupervised re-
ID task via cross-camera similarity exploration. It jointly
optimizes a CNN model and the relationship among the
cross-camera individual samples. Specifically, we apply an
unsupervised style transfer model on the training images to get
style-transferred images under different camera style. Then the
network training starts by treating each individual image as an
identity. Then, bottom-up clustering is applied to the feature
embedding extracted from the network to reduce the number
of classes. During the whole process, the network gradually
exploits similarity from across-camera unlabeled images. In
experiments, our method not only achieves higher performance
than the state-of-the-art methods in three large-scale re-ID
datasets but also performs favorably compared with other UDA
and semi-supervised learning methods.
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