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Abstract—Accurate predictions of future pedestrian trajectory
could prevent a considerable number of traffic injuries and
improve pedestrian safety. It involves multiple sources of informa-
tion and real-time interactions, e.g., vehicle speed and ego-motion,
pedestrian intention and historical locations. Existing methods
directly apply a simple concatenation operation to combine
multiple cues while their dynamics over time are less studied.
In this paper, we propose a novel Long Short-Term Memory
(LSTM), namely Holistic LSTM, to incorporate multiple sources
of information from pedestrians and vehicles adaptively. Different
from LSTM, our Holistic LSTM considers mutual interactions
and explores intrinsic relations among multiple cues. First, we
introduce extra memory cells to improve the transferability of
LSTMs in modeling future variations. These extra memory cells
include a speed cell to explicitly model vehicle speed dynamics,
an intention cell to dynamically analyze pedestrian crossing
intentions and a correlation cell to exploit correlations among
temporal frames. These three individual cells uncover the future
movement of vehicles, pedestrians and global scenes. Second, we
propose a gated shifting operation to learn the movement of
pedestrians. The intention of crossing the road or not would
significantly affect pedestrian’s spatial locations. To this end,
global scene dynamics and pedestrian intention information are
leveraged to model the spatial shifts. Third, we integrate the
speed variations to the output gate and dynamically reweight the
output channels via the scaling of vehicle speed. The movement
of the vehicle would alter the scale of the predicted pedestrian
bounding box: as the vehicle gets closer to the pedestrian, the
bounding box is enlarging. Our rescaling process captures the
relative movement and updates the size of pedestrian bounding
boxes accordingly. Experiments conducted on three pedestrian
trajectory forecasting benchmarks show that our Holistic LSTM
achieves state-of-the-art performance.

Index Terms—Pedestrian Trajectory Prediction, Long Short-
Term Memory, Holistic LSTM, Pedestrian Intention.

I. INTRODUCTION

ECENTLY, significant progress has been made in au-

tonomous driving systems [1], [2]. With the rapid devel-
opment of computer vision, autonomous driving systems are
successful in detecting and recognizing roads [3], cars [4], [5],
pedestrians [6], [7], [8], etc. It is also essential to anticipate the
near future to guarantee the safety of pedestrians, especially
for the future trajectories of pedestrians at crossings. Pedes-
trian trajectory prediction can prevent a considerable number
of traffic injuries as it enables more reaction time to take
action. Despite its significance, less attention has been paid,
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Fig. 1: Mllustration of pedestrian trajectory prediction on an on-
board camera setting. “Global Dynamics” indicates the motion
of view. The ground truth bounding box of the pedestrian
intending to cross the street is shown in green and the predicted
future bounding boxes are in blue. We aim to predict the
pedestrian’s future trajectory based on his trajectory history,
crossing intention and the global scene dynamics.

and it is challenging to anticipate the trajectories of pedestrians
since they exhibit highly variable behavior patterns [9].

In this paper, we study the problem of forecasting pedes-
trian’s future trajectory in a first-person view, which depends
on the visual observations of the pedestrian’s motion history.
The trajectory forecasting is compounded by the presence of
the relative motion and social interactions between humans and
vehicles. An example of this task is illustrated in Figure. 1. The
pedestrian in the green box has been standing by the road in the
past few seconds. Our target is to predict his trajectory in next
few seconds given the observations. Information such as the
movement of vehicles, pedestrian crossing intention and global
scene dynamics in observations contribute to the accurate
trajectory prediction since there are complex interactions and
intrinsic relations between vehicles and pedestrians.

Most existing research works on pedestrian trajectory pre-
diction focus on a bird-eye view instead of a first-person view.
They cannot be applied in an autonomous driving setting. A re-
cent work [10] forecasts the future trajectory from an on-board
camera view, but it only concerns the simple motion learning
of pedestrians and vehicle dynamics. These motions are fused
with other cues like speed information via a straightforward
concatenation operation. With the concatenated information, it
leverages a standard Long Short-Term Memory (LSTM) [11]
to directly make predictions for pedestrian future trajectory.
Although the typical LSTM has been proved to be efficient and
successful in trajectory prediction tasks [12], [13], it contains
only a single memory cell which limits the representation
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capability. Therefore, it is not able to handle complex motion
information, such as interactions between pedestrians and
vehicles or the environment. As a result, this simple framework
overlooks the intrinsic relations among different cues, e.g.,
vehicle speed, pedestrian intention, and the distance between
vehicle and pedestrian. However, these intrinsic relations and
mutual interactions are critical in reasoning and predicting the
pedestrian’s future trajectory.

We propose a novel Holistic Long Short-Term Memory
(Holistic LSTM) to introduce interactions among different
information cues and adaptively incorporate multiple sources
of motion information from pedestrians, vehicles and global
scenes. In our Holistic LSTM unit, memory cells model
the inter-related dynamics of pedestrian intention, vehicle
speed and global scene dynamics among the temporal frame
sequences. Excluding a typical memory cell that maintains the
state of input data, a pedestrian intention cell is introduced
to analyze pedestrian intentions that change over time, as
intentions of crossing the road directly affect pedestrian’s
future trajectory. Besides, we propose a speed cell to model
vehicle speed dynamics as there are complex interactions
between the vehicle and the target pedestrian. For example,
a car at high speed would change the man’s mind to cross the
road, resulting in changes in his future trajectory. Moreover,
we leverage a correlation cell to learn the motion dynamics
of global scenes. The correlation, which has a strong relation
to the changes in pedestrian’s trajectory, has both direction
and magnitude, whereas ego-speed cue only has magnitude.
Besides, past motion dynamics are able to help forecast
future dynamics, thereby further improving the accuracy of the
trajectory prediction. Multiple extra memory cells significantly
improve the ability to model complex information such as
interactions and motion dynamics that they all help for future
trajectory predictions.

Second, we propose a gated shifting operation to learn the
movement of pedestrians by dynamically incorporating the
pedestrian intention information and global dynamics. The
intention of crossing the road or not will affect the spatial
locations of the pedestrian. For example, the pedestrian in
Figure. 1 has a firm intention to cross, which means he would
change his locations to the middle of the road in the next few
seconds. Our gated shifting operation enables to adjust the
spatial locations based on these two essential cues. In the gated
shifting operation, we introduce an intention gate to control the
intensity of intention information. It takes the hidden state of
the previous step and current step data as input and outputs a
vector to extract the relevant information from the cell state.
The extracted useful intention information along with global
scene dynamics are incorporated into the outputs to improve
the precision of predictions further.

Third, we dynamically rescale the output gate of Holistic
LSTM to exploit the changing of vehicle speed, which aims
to model the changes in the scale of pedestrian’s bounding
boxes. The movement of vehicles inevitably alters the distance
between the pedestrian and the vehicle. Therefore the vehicle
speed further influences the scale of the predicted pedestrian
bounding box. We integrate the speed variations into LSTM’s
output gate, which reweights the output channels towards

accurate bounding box rescaling. Extensive experiments con-
ducted on three benchmarks of pedestrian trajectory prediction
task show that our Holistic LSTM achieves state-of-the-art
performance. Our contributions are summarized as follows:

o Targeting the challenging pedestrian trajectory prediction
task, we propose to leverage intrinsic relations and mutual
interactions among information cues from both pedestri-
ans and vehicles.

e We propose the Holistic LSTM to introduce information
interactions. Three additional memory cells are designed
explicitly to model future variations.

o We propose a gated shifting operation to learn the spa-
tial movement of the pedestrian and then dynamically
rescale the output by the vehicle speed variations. Both
operations are well-designed to explore intrinsic relations
among multiple cues.

o Extensive experimental results show that our Holistic
LSTM achieves state-of-the-art performance on three
benchmarks.

II. RELATED WORK

Pedestrian Detection and Tracking. Pedestrian detection and
tracking are the foundation of pedestrian trajectory prediction.
The classical detection task first applies a sliding window
on the input image to extract features at candidate regions,
then classifies regions containing the target object. Recently,
state-of-the-art detection performance is achieved by deep
CNN [14], [15], [16]. As for pedestrian tracking, single-person
tracking is considered as person re-identification [17], [18]
problem while multi-person tracking methods are used to track
multiple person in a crowded scene [19], [20].

Pedestrian Trajectory Prediction. There are relatively fewer
work that focus on pedestrian behavior prediction from a
moving vehicle perspective. On the contrary, pedestrian trajec-
tory prediction has been studied extensively in a surveillance
setting from a birds-eye view [21], [8], [22], [23]. These works
have simulated bird’s eye views by projecting egocentric video
frames onto the ground plane, however road irregularities and
some other distortions would make these projections become
incorrect, and then prevent accurate position prediction of
pedestrians. Recent works [24], [25], [12] forecast the future
pedestrian trajectory in 3D space. However, the 3D coordinates
are difficult to obtain in real world scenarios, as it requires
expensive stereo cameras and LIDAR equipment and there
would be a lot of noise data in the obtained 3D maps. The
most recent works such as Peek Into The Future (PIF) [8] and
State-Refinement LSTM (SR-LSTM) [21] extends [26] with
visual features and new pooling mechanisms to improve the
prediction precision. It is noticeable that SR-LSTM weighs
the contribution of each pedestrian to others via a weighting
mechanism. It is similar to the idea in Social-BiGAT [27]
which uses an attention mechanism to weigh the contribution
of the recurrent states that represent the trajectories of pedes-
trians. As for existing few highly related work [28], it does not
consider interactions between ego-vehicles and pedestrians.
However, our method depends on first-person videos captured
by an on-board camera and considers the complex interactions
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between vehicles and pedestrians. Concretely, we take three
critical information cues: vehicle speed, pedestrian intention
and global correlations into account.

RNNs s for Trajectory Prediction. Recurrent Neural Networks
(RNN) and its variant structures such as LSTM [11] and Gated
Recurrent Units (GRU) [29] is widely used in various tasks
including speech recognition [30], language translation [31],
image captioning [32], [33], action recognition [34], [35],
[36], [37], [38], [39], [40], [41] and pedestrian trajectory
prediction [26], [42], [43], [44], [45], [8]. Among them,
Differential RNN [39] adopts a differential gating mecha-
nism for the LSTM network to extract the derivatives of
internal state (DoS). Then it leverages the derived Dos to
learn salient dynamic motions from successive skeleton data.
However, we leverage a correlation cell which learns motion
dynamics from the optical flow extracted from the observed
sequences. Besides, we propose a gated shifting operation to
learn the motion of pedestrians by dynamically incorporating
the pedestrian intention information and global dynamics. Part-
aware LSTM [40] separates the memory cell of the LSTM
into part-based sub-cells which learns the long-term context
representations individually for each body part. As for our
work, we introduce three extra memory cells which uncover
future movement of vehicles, pedestrians and global scenes, re-
spectively. ST-LSTM [41] explores the hidden states of action-
related information in both spatial and temporal domains
concurrently, and it exploits a trust gate mechanism to handle
the noisy input data. In Holistic LSTM, intention states, speed
states and correlation states are dynamically incorporated and
all updated in a recurrent way. Alahi et al. [26] propose a
social LSTM which uses a LSTM network architecture and a
social pooling layer to leverages spatial information of nearby
pedestrians. Therefore, it can model interactions among the
scene. Sun et al. [12] adopt a sequence-to-sequence LSTM
encoder-decoder architecture to predict pedestrian position and
direction angle. Gupta et al. [13] leverage a recurrent based
generative adversarial network which consists of a LSTM-
based encoder-decoder generator and LSTM-based discrimina-
tor to generate and predict the future pedestrian trajectory. Xue
et al. [43] introduce a hierarchical LSTM model to leverage
the scene structure for predicting the future trajectory, which
incorporates observed trajectory, social neighbourhood and
global scene features extracted from CNN. However, most
of these trajectory prediction work do not focus on an on-
board camera setting and these used information like social
interactions may not be available in driving assistance system.
Autonomous and Assisted Driving. Research for vehicle
odometry prediction or autonomous driving dates back to
ALVINN[46]. This work predicts the driving direction the
car should follow through the designed neural network. More
recently, diverse datasets are proposed for autonomous driving.
Senthil et al. [47] proposes a fish-eye automotive dataset,
WoodScape, which comprises of four surround view cameras
and nine tasks. Song et al. [2] provides a large-scale database
suitable for 3D car instance understanding named Apollo-
Car3D. Hong et al. [48] predicts the future states of vehicles
by learning complex interactions into a unified representation.
Since great progress has been made in autonomous driving,

it is important to anticipate the near future to guarantee the
safety of pedestrians by predicting their future trajectory.

III. METHODOLOGY

Our target is to forecast the future pedestrian trajectory
based on observed frames over a video. We first formulate
this problem in Sec. III-A. Then we introduce the proposed
Holistic LSTM in Sec. III-B, which leverages three critical
information cues to model the complex interactions. At last,
we show that Holistic LSTM can be readily incorporated into
the framework for trajectory prediction in Sec. III-C.

A. Formulations

Given the bounding boxes of a pedestrian in the past m
frames, our goal is to predict its bounding boxes in the future
n frames. Formally, the bounding box of the ¢-th pedestrian at
time step ¢ can be described by the top-left (¢/) and bottom-
right (br) pixel coordinates: b! = {(xu,yu), (Tor, Yor)}»
where x4 and yy; indicate the position of the top-left corner
while xp,. and y;,. are the bottom-right one. Our objec-
tive is to learn the distribution p(By|Boys) in an optimiza-
tion process of future trajectory prediction, where Bg,,s =
{bl=m, bﬁ_"”ﬂ, ...,bt} are the observed sequences of pedes-
trians, By = {b§+1,b§+2,...,b§+"} are the future sequences
of pedestrians. However, it is not easy to directly predict the
future trajectory By based solely on By as future trajectory
is inevitably uncertain even with the same historical trajectory.
Additional information cues, e.g., pedestrian intention, vehicle
speed and global scene dynamics are essential to the accuracy
of future trajectory prediction. We introduce how we obtain
the above information cues in the following:

Intention Estimation. We denote the intention of a pedestrian
as int € {0,1}, which indicates the probability of the
pedestrian crossing the street. Pedestrian intention gives a hint
about the pedestrian’s future movement, which helps predict
the future trajectory. Following [10], [49], [50], we adopt an
encoder-decoder architecture for pedestrian intention estima-
tion, where ConvLSTM [51] is the encoder and the standard
LSTM is the decoder. The encoder receives a sequence of
square cropped images around the pedestrians over frames.
The decoder takes the output of the encoder together with
the position coordinates of the pedestrian. The final output of
the decoder is a binary value, where 1 indicates the pedestrian
intends to cross the street and 0 means not. We set the intention
information cue as the mean of pedestrian intentions among
the observed frames.

Ego-Speed Estimation. Most of first-view benchmarks lack
ego-speed information which is effective for pedestrian trajec-
tory prediction. We estimate ego-speed by using deep neural
network that leverages optical flow and monocular depth
information. They are extracted from images captured by a
camera mounted on the moving car. Since the magnitude
of optical flow is highly correlated with the moving speed
of the observer, the closer objects are to the observer the
faster they appear to be moving. In the pipeline of ego-speed
estimation, we introduce an optical flow algorithm (PWC-
Net [52]) and a depth estimation algorithm (MonoDepth [53]).
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Fig. 2: We simulate the scale changing problem in this figure:
a pedestrian is standing by the road from time ¢ to t + m.
The closer the pedestrian is to the vehicle, the larger his scale
seems to change. The height of the pedestrian’s bounding box
changes from h to Sh.

t+m

The speed estimation pipeline is shown as follows. First, we
run the optical flow and depth estimation algorithm on image
frames. Then, the quotient OF/DISP is regarded as the
scaled speed estimates, where OF' denotes the mean of the
magnitude of optical flow vectors and DISP indicates the
mean of the disparity values. We set thresholds: OF'>1.0 and
DISP>0.01 to obtain valid pixels following [54]. After that,
we concatenate the scaled speed estimates over frames of a
video. The aggregated vectors are then temporally smoothed
to get the estimated speed by using a 1D convolution. Finally,
we use a scaling factor to convert the estimated speed to the
real-world domain and obtain the estimated vehicle speed.

Correlations of Global Scenes. The motion of the global
scenes induces additional apparent visual movements of pedes-
trians and nearby objects, which also is an important cue to
the pedestrian’s future locations. We view the correlation as a
pattern of relative motion in the scene. Following FlowNet [55]
whose correlation layer computes correlations over video
frames, we define the correlation of two patches centered at
x;_1 in the first frame b;fl and x; in the second frame b‘; as

> (fimr(@im1 + p), fi(mi + p))

ne[—k, k] x[—k,k]
()

For each location x;_; we compute correlations Cor(x;_1,x;)
only in a neighborhood of size D := 2d + 1 by limiting the
range of x; and we set d = 10 as [55]. Then we obtain
the correlation of size (w x h x D?). And we apply an
average pooling operation to downsample it along H x W
sides. Finally, we concatenate the preprocessed correlations
over frames in a video as the correlation cue.

Pedestrian Scale Information. As shown in Figure. 2, vision-
based displacement measurement in first-person videos is not
consistent with the displacement measurement in physical
domain. For example, if a person walks towards the vehicle
at a constant speed, we would anticipate him to continue
this constant speed in subsequent frames. However, visual
displacements shown in the camera change faster as the closer
pedestrians are to the vehicles, the larger their scale seems
to change. More intuitively, the movement of vehicle induces
the changes of the distance between the target pedestrian
and the vehicle, therefore it would affect the scale of the

Cor(zi—1,x;) =

predicted pedestrian bounding box. Motivated by these ob-
servations, we propose two effective approaches to model
the pedestrian scale information. First, we learn both spatial
movements and scale information of the target pedestrian
jointly. Formally, we add the scale information (h;) into each
location bf, and x; = ((b%)T, h;)T. Then, the network input
is Xin = (Tt—m, Tt—mt1, .., Tt), and the output is Xyt =
jt+17jt+2;--~,i‘t+n)’ where T4y = ((bf+1 — bg)T,hH_l)T.
Second, we dynamically rescale the output gate to exploit the
changes of vehicle speed, so as to model the changes in the
scale of pedestrian’s bounding boxes. Specifically, the vehicle
speed is obtained by an on-board diagnostics (OBD) sensor or
the ego-speed estimation module.

B. Holistic LSTM

Information cues mentioned above are all highly correlated
with the prediction of pedestrian’s future trajectory. To lever-
age the intrinsic interactions among these different cues, we
propose Holistic LSTM which introduces extra memory cells,
a gated shifting operation and dynamically rescales the output
gate according to the changes of vehicle speed.

The architecture of the typical LSTM and the proposed
Holistic LSTM are illustrated in Figure 3. The typical LSTM
contains an input gate 7;, a forget gate J;, an output gate
O, a memory cell C;, an output response H;. Besides these,
our Holistic LSTM involves a speed cell S;, an intention gate
Z;, an intention cell A; and a correlation cell /C;. In the
two LSTMs, the memory cell maintains its state over time,
the input gate and forget gate govern the information flow
into and out of the memory cell. The output gate controls
how much information from the memory cell is passed to
the output. Whereas the proposed speed cell, intention gate,
intention cell and correlation cell help to handle complex
motion information. In our proposed gated shifting operation,
pedestrian intention and global scene dynamics are leveraged
to perceive the movement of the pedestrian. Mathematically,
we use Oy - K; and Z; - A; to dynamically change the
output H;. Moreover, Holistic LSTM learns the changes in
the scale of pedestrian’s bounding boxes by exploiting the
changing of vehicle speed. And we encode S; into O, for
dynamically rescaling the output gate. Instead of adopting
a simple concatenation operation on those helpful cues, we
propose Holistic LSTM which is beneficial to making good
use of the multiple information cues for pedestrian future
trajectory prediction. To better understand how we leverage
these important cues and designed operations, we introduce
the details of these extra memory cells and gates in Holistic
LSTM in the following.

Speed Cell. We observed that the movement of vehicle
changes the distance between the target pedestrian and the
vehicle. It implicitly indicates that the vehicle speed further
influences the scale of pedestrian bounding box. Motivated
by this observation, a speed cell is designed to learn the
relation between vehicle speed and the change in the scale
of pedestrian bounding box. The initial input of the speed
cell is a concatenation of all vehicle speeds in observed
frames, So € Ry xm, named dynamic speed units. At each
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Fig. 3: (a). The structure of a standard LSTM neuron. (b) The structure of our proposed Holistic LSTM neuron which has a
speed cell S;, an intention cell A;, a correlation cell K; and an intention gate Z; additionally, where o is sigmoid activation

function and F is softsign activation function.

time step, a new speed state will be calculated by S; =
softsign(WX;+WH;_1+WS;,_1+bs). Then the speed item
is incorporated into the output gate Oy = (WA, +WH, 1+
WC,+WS,+b,) to dynamically rescale the output responses
(changes in bounding box scale). Finally, the updated output
‘H: and speed state S; will be received by the Holistic LSTM
neuron of the next step.

Intention Gate. The pedestrian intention for crossing the
street will influence his spatial movements in physical domain.
For example, a pedestrian with a strong intention to cross the
street will change his bounding box locations, even observed
from a stationary vehicle. However, the target pedestrian’s
physical locations will not change if he has no intention
(¢nt = 0) to cross (stop by the road). We propose an intention
gate to govern how much the location of the pedestrian will
change according to different pedestrian intentions. We use
a sigmoid function as the activation to achieve the intention
gate, Z;, = o(WX;+WH,;_1+WC;+b,). The input intention
value is the output of the applied intention estimation module.
An intention gate is developed to make Holistic LSTM robust
to noisy intention data as intention results are predicted by
the intention module which consists of uncertainties. In this
way, it can analyze the reliability of the intention data at
each spatiotemporal step and give better insight to the network
about when to update, forget, or remember the contents of the
intention memory cell, the representation of long-term location
movements information.

Intention Cell. As mentioned above, the pedestrian cross-
ing intention has impacts on his spatiotemporal movements.
Besides, there are complex interactions between pedestrian
and vehicle, e.g. the pedestrian would change his intention for
crossing the road if the coming vehicle speeds up. Therefore,
we propose an intention cell to maintain the dynamic intention
states rather than using a fixed intention value in previous
methods. The initial input (Ay € Rpyx1) of the intention
cell are the results of the pedestrian intention estimation
model. Then the intention state will be updated by A; =
softsign(WX; + WHy—1 + WA;_1 +b,) at every time step
and taken as input for the intention cell in next LSTM neuron.
Each intention state will also be incorporated into the output
responses through the gated shifting operation.

Correlation Cell. Correlation cell aims to learn motion
dynamics and directions of global scenes in the observed
sequences, which help to predict the future pedestrian trajec-
tory. The input of correlation cell in Holistic LSTM is the
correlation cue (g € Rpyxa441) preprocessed in Sec. III-A.
We use an activation operation to update the correlation state.
Like other memory cells, each updated correlation result would
be encoded into the hidden state of current step to further
influence other states.

Recurrent State. The speed variations will influence the
LSTM’s output gate and the output will change speed states
in next LSTM neuron, just as the mutual interactions between
the vehicle and the pedestrian. Mathematically, the proposed
Holistic LSTM is formulated as:

Li=c(WX,+ WH_1 + WCi1 + WS4 +b;)  (2)
Fr=0WX;+WHy1 + WCi1 + WSi—1 +by)  (3)
Ki = softsign(WIKi—1 + b) 4)
Ci = FiCi1 +Lisoftsign(W Xy + WHi—1 +b.) ()
St = softsign(WXy + WHy—1 + WS;_1 + bs) (6)
Or=c(WXy + WHi_1 + WC; + WS; + b,) @)
Zi=c(WX; + WHy_1 + WC, 4+ b,) (8)
Ay = softsign(WX, + WHi—1 + WA_1 + b,) 9)
Hi = Orsoftsign(Ci) + O:K: + Z1 Ay, (10)

where o is the sigmoid function, weight matrices are denoted
as WV and bias vectors denoted as b. The gated shift operation
includes a dot product between the intention gate Z; and
intention cell state A;, another dot product between the output
gate O, and correlation cell state K;. Ego-speed cell state S;
dynamically reweights the output channels which can be ben-
eficial to a more accurate location prediction of the pedestrian
bounding boxes. In the proposed LSTM network, the speed
cell, intention cell and correlation cell would update its state
at every time step. Then the speed cell will affect the output
responses by changing the output gate to reweight the output
channels, which towards accurate bounding box rescaling.
However, the intention cell and correlation cell directly alters
the output which is in line with the reality that pedestrian
spatial movements depend on both the intention value of
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Fig. 4: Framework of the pedestrian trajectory prediction method equipped with the Holistic LSTM, which consists of four
modules: pedestrian intention module, ego-speed estimation module, correlation module and trajectory prediction module. The
intention module (blue) is applied to predict pedestrian crossing intentions by taking a series of cropped images around the
target pedestrian as input. The ego-speed module (purple) receives both depth estimation and optical flow of frames then
estimates ego-speed cues. The correlation module (yellow) computes correlations over frames. The encoder model (green) of
the prediction network processes location information of pedestrian bounding boxes. Finally, Holistic LSTM as the decoder
model receives the output of encoder model, predicted intentions, correlations and ego-speeds to predict the future locations.

crossing the street and the motion dynamics of global scenes.
In a word, the influence of speed and intention information can
be seen as the changes in the scale of pedestrian bounding box
and the movement of spatial locations respectively, which can
be shown in Figure. 2. The updated intention states, speed
states and correlation states will be taken as the input of
next LSTM neuron. Besides, the output responses of each
Holistic LSTM layer will also be taken as the input of next
LSTM layer to further influence the future gates and cells.
In this way, all states can be updated on a recurrent way.
Therefore, a comprehensive representation incorporating these
critical information cues for pedestrian trajectory prediction
can be learned by Holistic LSTM.

C. Holistic LSTM for Trajectory Prediction

Our framework for pedestrian trajectory prediction can be
seen in Figure 4. It contains four necessary modules: pedes-
trian intention module, ego-speed estimation module, global
correlation module and pedestrian trajectory module. Our
proposed Holistic LSTM is applied in pedestrian trajectory
prediction module. As shown in the figure, we apply a RNN
encoder-decoder network where Holistic LSTM is equipped
in the decoder architecture. The inputs to the encoder are the
observed bounding box locations of the pedestrian. A temporal
attention module applied to the encoder inputs aims to find the
most relevant frames in the observed data. Then the output of
the encoder is processed by a fully connected network and
a self-attention module. The former aims to reduce the data
dimension and the latter is to find the most related information.

For the Holistic LSTM network in the decoder model, it
receives six inputs {Ci—1,S¢—1, He—1, Xi—1, At—1,Ke—1} at
t—th time step, which is described in III-B. It will update each
memory state at every time step after learning the interactions
among these information cues. The Holistic LSTM is followed
by fully connected network and the final output are the
prediction results of future pedestrian locations.

IV. EXPERIMENTS
A. Datasets

JAAD [25]. This dataset is designed to study the behavior
of traffic participants including pedestrians and vehicles. It
contains videos captured with a front-view camera under
various scenes, weathers and lighting conditions. It consists
of 346 high-resolution video clips (5-15s) with annotations
and 82,032 frames extracted from 240 hours driving videos.
We use the same train/test split as in [10].

Pedestrian Intention Estimation (PIE) [10]. PIE is a re-
cently proposed dataset that includes over 6 hours of video
footage of pedestrians at various types of crosswalks, it is
also captured by a on-board camera. It is the only dataset that
simultaneously contains pedestrian intentions and ego-vehicle
information (e.g. ego-speed) so far. Besides, the data provides
bounding boxes for traffic objects, pedestrian attributes and
road boundaries which are necessary for perception and visual
reasoning. There are 1,842 pedestrians samples and 293K
annotated frames. It is divided into train, test and validation
sets with the ratio of 50%, 40% and 10% respectively.
S-KITTI. KITTI [1] is a challenging benchmark for the
tasks of stereo, optical flow, visual odometry/SLAM and 3D
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PIE JAAD
Method MSE Cuvse | CFuse MSE Cyvse | CFyvse S-KITTI MSE15s | CMsE, 5
0.5s Is 1.5s 1.5s 1.5s 0.5s 1s 1.5s 1.5s 1.5s Baselineggo. o8 557 2928
Linear [10] | 123 | 477 | 1365 | 950 3983 223 | 857 | 2303 | 1565 6111 Tobox
LSTM [10] | 172 | 330 | o1l 837 3352 | 289 | 569 | 1558 | 1473 5766 Baselineconcat | 599 S44
B-LSTM [56] | 101 | 296 | 855 811 3259 159 | 539 | 1535 | 1447 5615 PIE¢ra; 74 >28
PIE;q; [10] | 62 | 186 | 559 520 2162 110 | 399 | 1248 | 1183 4780 Ours 525 470
Ours 56 | 167 | 507 466 1917 105 | 389 | 1177 | 1116 4493

TABLE I: Left: Prediction errors over multiple future time steps of different methods. M SE is calculated over bounding
box coordinates in pixels. Cyysg and C'Fy;sg are the M SFEs calculated over the center of the bounding boxes for all the
predicted frames and the last time step respectively. In these data, 1s represents 30 future frames in the video. As JAAD dataset
does not contain necessary vehicle ego-speed information, we obtain ego-speed cues by applying the ego-speed estimation
module. Right: Results on the S-KITTI dataset. Baseliney,, indicates that only to leverage observed location information for
future trajectory prediction. Baseline,,,.,¢ concatenates different information cues (estimated ego-speed, predicted intention

and calculated correlation) into the input.

l Input [ Method [ MSE [ CMmsE CFysE ‘

. PIE;rq; [10] 611 570 2414

loc + int —
Holistic LSTM 596 557 2346
loc + speed PIE;;.q; [10] 572 535 2204
P Holistic LSTM | 554 516 2131
loc + int + speed Pﬂjzhjaj [10] 559 520 2162
Holistic LSTM 539 501 2057

TABLE II: Comparisons with state-of-the-art method PIE;,.,;
with various input. loc, int and speed stand for location,
intention and vehicle speed in PIE. To have a fair comparison,
we do not leverage scale information like PIE,.; and we also
report 1.5s prediction on the three metrics.

object detection. We manually select a part of data including
crossing pedestrians as S-KITTI (Small-KITTT). S-KITTT has
69 persons which make up 712 sequences of pedestrian
trajectory data. In the experiments of S-KITTI, we keep the
same setting (0.5s observation, 1.5s prediction) as in the other
two benchmarks and we only test on S-KITTI using model
pretrained on PIE because it is a small amount of data.

Evaluation Metrics. To evaluate the performance of our
Holistic LSTM and compare with other methods, we report the
following metrics: M SE over bounding box coordinates[56],
Cryse which is the average MSE of the center of the
bounding boxes on the predicted sequences, F;sg stands for
the M SFE of the last time (t+n), CFyrsg indicates the Cps
of the last time (¢ +n). All results of the pedestrian bounding
box predictions are in pixels. We conduct each experiment for
five times and use the mean results as our final results in the
table, since the prediction task consists of uncertainties.

B. Implementation

Our framework is implemented by Keras' and PaddlePad-
dle2. In the training phrase, we set batch size as 64 and total
epoch as 100. We use EarlyStopping and ReduceLROnPlateau
as the learning schedulers in which we set min_delta to
0.1, factor to 0.2, patience as 10 in EarlyStopping and
5 in ReduceLROnPlateau. A learning rate is initially set to

Uhttps://github.com/fchollet/keras
Zhttps://github.com/PaddlePaddle/Paddle

0.001. The number of units in LSTMs is set to 256. As our
target is to design a new LSTM network for learning a better
incorporation among various information cues, we do not train
pedestrian intention estimation model and just adopt the model
pretrained in [10]. In our experiments, models are trained and
tested on 0.5s observation, then predict future trajectories over
0.5s, 1.0s and 1.5s. As both JAAD and S-KITTI benchmarks
lack necessary vehicle speed information, we use the speed
estimation module to obtain the estimated speed of each frame.

C. Comparison to State-of-the-art

We compare our proposed method with state-of-the-art
methods in Table. I. As shown in the table, our Holistic LSTM
outperforms all other existing methods on three benchmarks.
On the PIE dataset, we improve the performance by up to
10% than PIE;,.q; on M SEj 55 (from 62 to 56). Also, Holistic
LSTM is better than (by about 10%) PIE;,,; in a longer time
prediction on M SFE; 55 (from 559 to 507). On the JAAD
dataset, we improve the performance from 4780 to 4493 on the
metric CFyrsg, 5, . This indicates that Holistic LSTM exhibits
stronger ability on both short and long time predictions. Due
to the small scale of the S-KITTI dataset, we directly apply
the model trained on the PIE dataset without finetuning for
evaluation. In this case, Holistic LSTM can achieve a better
performance than PIE;,,; (574 vs. 525) which indicates that
our method has a strong generalization ability on different
data. To have a more comprehensive comparison to the state-
of-the-art method PIE;,,;, we conduct experiments by using
different input information as shown in Table. II, and we
do not encode pedestrian scale information into the Holistic
LSTM network for a fair comparison. We outperform PIE;,.,;
on MSE; 55 by 15, 18, 20 with loc + int, loc + speed,
loc 4 int 4 speed input information respectively. This indi-
cates that our method is able to handle different information
cues and comprehensively exceed the state-of-the-art method
PIE;,.q;. Improvements on JAAD are slightly less significant
than on PIE because JAAD has a large amount of data and
its vehicle speed information are estimated by the learned
model. Holistic LSTM reduces 5 prediction errors (4.5%) in
MSEy 5, 71 prediction errors (5.7%) in M SE; 55 and 287
(6.0%) in CFirsE, 5., it also proves that our method performs
better in a long time prediction.
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Tnput Scale MSE Fyse CusE CFyvsE
0.5s Is 1.5s 1.5s 0.5s 1s 1.5s 1.5s
. X 56 187 | 596 2455 40 164 | 557 2346
loc + int
Vv 57 178 | 555 2273 40 154 | 516 2169
X 61 181 554 2232 43 158 516 2131
loc + speed
Vv 60 176 | 529 2129 43 152 | 491 2028
. X 60 181 | 539 2159 43 156 | 501 2057
loc + int + speed
Vv 58 173 | 517 2068 41 150 | 481 1975

TABLE III: Comparison results of encoding pedestrian scale information or not in Holistic LSTM with different inputs.

Input Method MSE Cuse CPuse

0.5s 1s 1.5s | 0.5s 1s 1.5s 1.5s

int Concatenation Baseline 60 186 | 576 43 162 | 536 2243

Holistic LSTM 57 178 | 555 40 154 | 516 2169

speed Concatenation Baseline 63 183 547 45 159 | 508 2086

P Holistic LSTM 60 176 | 529 43 152 | 491 2028

. Concatenation Baseline 63 183 545 45 158 | 505 2074
int 4+ speed —

Holistic LSTM 58 173 | 517 41 150 | 481 1975

. . Concatenation Baseline 60 179 536 43 152 | 494 2033
int 4+ speed + correlation —

Holistic LSTM 56 167 | 507 38 139 | 466 1917

TABLE IV: Comparisons between ‘Concatenation Baselines’ and ‘Holistic LSTMs’. Models of ‘Concatenate Baseline’
concatenate different information cues as input data and apply a typical LSTM network to encode these cues. However,
our proposed Holistic LSTM network introduces extra memory cells and novel operations to leverage all the cues.

D. Ablation Studies

We conduct ablation studies on the PIE dataset to see how
each of components: pedestrian scale information, pedestrian
intention cues, ego-vehicle speed cues, global correlation
cues and the proposed LSTM architecture contributes overall
prediction performance.

Scale Information. To investigate the effect of scale informa-
tion, we conduct experiments with/without scale information
and the results are shown in Table. III. We observe that
encoding scale information helps the performance most for the
model with loc + int as input, which reduces mse from 596
to 555 on M SE 55 and 557 to 516 on CysE, .. However, it
reduces less mse on M SFE; 55 by 25 (from 554 to 529) on the
input loc + speed, this may be because ego-speed information
is also leveraged to perceive the changes of pedestrian’s
scale information. When the input to the model turns to
loc+int + speed, it also reduces 22 and 20 on M SFE 55 and
CmsE, . respectively. All the results in Table. III prove that
scale information is critical for pedestrian trajectory prediction.
Different information cues. Three information cues are lever-
aged to construct four kinds of input for Holistic LSTM. The
experiment results with the four different input are shown
in Table. IV. With only the ego-speed information as input,
Holistic LSTM gets 529 on M SFE-1.5s which is better than
only using the intention information cue. However, the model
with intention information as input performs slightly better in
0.5s prediction, which demonstrates that pedestrian intention
information may contribute more in a short time prediction
whereas vehicle ego-speed information helps more in a long
time prediction. Also Holistic LSTM performs better when the
proposed operations are applied to incorporate both ego-speed
and intention information denoted as Holistic LSTM; ;4 speed-
Finally, Holistic LSTM achieves 507 M SE by incorporating

an additional correlation information cue. All the results
illustrate that the proposed extra memory cells and operations
are effective for the pedestrian trajectory prediction.

Holistic LSTM In Table IV, ‘Concatenate Baselines’ adopts a
traditional LSTM network and directly concatenates the input
information as decoder input, whereas Holistic LSTM learns
to dynamically incorporate the input information cues. Both
models of Baselines and models of Holistic LSTMs encode
pedestrian’s scale information into the input data. With four
kinds of information cues as input, Holistic LSTMs outperform
Baselines by a margin of about 6% on all evaluation metrics.
Concretely, Holistic LSTM achieves the best performance by
encoding these four cues, it reduces 29 on M SE; 55 and 28
on Cysg, 5. than the Concatenation Baseline.

E. Visualization

To better understand experimental results and the improve-
ments to the state-of-the-art method, we display several of
our prediction results in Figure. 5. From theses visualized
results, our proposed Holistic LSTM outperforms the state-
of-the-art method PIE;.,; in many different scenarios. Our
Holistic LSTM can handle the changes in pedestrian scale well
as shown in 1st and 3rd row in Figure. 5: a person is crossing
the road from the front of the vehicle while the vehicle moves
at high speed. Although the pedestrian has spatial movements
as well as changes in the scale of his bounding box, Holistic
LSTM exhibits much better prediction results than PIE;,.;.

A few failure cases are shown in Figure. 6 to demonstrate
some possible aspects can be improved in future work. One
failure case is shown in the first row: when the vehicle stops at
the crossing and a pedestrian walks towards the car, Holistic
LSTM ;,: demonstrates a stronger prediction ability than
Holistic LSTM ;544 speed+correlation- In such scenario, pedes-
trian’s intention plays a greater role while global dynamics
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Fig. 5: Visualization examples of pedestrian trajectory predictions. The first column consists of one observed video frame with
the green ground truth bounding box. Column 2~4 represent the prediction results for the future 0.5s, 1.0s and 1.5s respectively.
And bounding boxes with different color correspond to different model: PIE;,,; (purple), Holistic LSTM;,,; (blue), Holistic
LSTM;peeq (yellow) and Holistic LSTM; 14 speed+correlation (red).

t t+0.5s

t+1.5s

Fig. 6: Visualization of failure modes in pedestrian trajectory predictions.

extracted from noisy backgrounds might hinder the prediction
results. Another failure case is shown in the second row, the
vehicle is turning right at the crossing and all methods acquire
bad prediction results. However, Holistic LSTM still performs
best whereas PIE;,,; performs much worse than all Holistic
LSTM models, which indicates that the proposed Holistic
LSTM is good at sensing the changes in directions of the
scenes. In the third row, Holistic LSTM does not obtain an
optimal result that might due to the interference brought from
the cyclist. The cyclist not only affects the mutual interactions
between the vehicle and the pedestrian to a certain extent but
also potentially changes their trajectories. Observed from these
visualization results, we can find that different information
cues help Holistic LSTM to handle different scenarios, and
it is necessary to leverage such a well-designed LSTM to
dynamically incorporate these useful cues.

F. Limitation

Since depth estimation and optical flow technologies have
limitations in night-time scenes and adverse weather condi-
tions, we could incorporate some image restoration methods
(e.g., deraining, dehazing, desnowing and low-light enhance-
ment) to improve the applicability of these technologies, or
take radar signal information into consideration in future work.
Moreover, given that the existing datasets do not provide night-

time scenes and adverse weather conditions for pedestrian
trajectory prediction, we would leave the studies of these
scenes in future work.

V. CONCLUSIONS

In this paper, we propose a novel Holistic LSTM net-
work for pedestrian trajectory prediction, which analyses the
location movements of the target pedestrian, vehicle speed
information, motion dynamics of global views and pedestrian
intentions for crossing the street together at every time step.
Extra memory cells: speed cell, intention cell and correlation
cell are proposed in Holistic LSTM to improve the ability
of LSTMs in modeling future dynamic variations. And a
novel gated shifting operation is introduced to dynamically
incorporate the pedestrian intention and global correlation
information, which mainly governs the spatial movement of
the pedestrian. Moreover, we explore to rescale the output of
Holistic LSTM dynamically according to the vehicle speed
variations, which results in more accurate predictions of pedes-
trian’s bounding boxes. In experiments, the proposed Holistic
LSTM achieves state-of-the-art performance on three first-
view benchmarks of pedestrian trajectory prediction.
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