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Abstract—We focus on the occlusion problem in person re-
identification (re-id), which is one of the main challenges in
real-world person retrieval scenarios. Previous methods on the
occluded re-id problem usually assume that only the probes are
occluded, thereby removing occlusions by manually cropping.
However, this may not always hold in practice. This paper relaxes
this assumption and investigates a more general occlusion prob-
lem, where both the probe and gallery images could be occluded.
The key to this challenging problem is depressing the noise
information by identifying bodies and occlusions. We propose to
incorporate the pose information into the re-id framework, which
benefits the model in three aspects. First, it provides the location
of the body. We then design a Pose-Masked Feature Branch to
make our model focus on the body region only and filter those
noise features brought by occlusions. Second, the estimated pose
reveals which body parts are visible, giving us a hint to construct
more informative person features. We propose a Pose-Embedded
Feature Branch to adaptively re-calibrate channel-wise feature
responses based on the visible body parts. Third, in testing,
the estimated pose indicates which regions are informative and
reliable for both probe and gallery images. Then we explicitly
split the extracted spatial feature into parts. Only part features
from those commonly visible parts are utilized in the retrieval. To
better evaluate the performances of the occluded re-id, we also
propose a large-scale dataset for the occluded re-id with more
than 35,000 images, namely Occluded-DukeMTMC. Extensive
experiments show our approach surpasses previous methods on
the occluded, partial, and non-occluded re-id datasets.

Index Terms—Qccluded Person Re-Identification, human pose,
occlusion detection.

I. INTRODUCTION

ERSON re-identification (re-id) is a popular computer

vision task, which aims at searching people across non-
overlapping camera views at different times. Although recent
approaches have achieved great progress, person re-id still
suffers from large varieties of occlusions, pose, illumination,
and so on. Occlusion is one of the main challenges for
the person re-id since the occlusions introduce distractive
information and confuse the re-id models.

Most existing person re-id methods [1], [2], [3], [4] use
features of the whole pedestrian images for retrieval. However,
the distractive occlusion information may also be encoded in
these global features. Thus these models are not robust when
meeting the occlusion situations. For instance, in Fig. 1, if a
probe person image is occluded by a tree, the methods that
cannot distinguish the target person and obstacles will retrieve
incorrect results with a similar tree.

Jiaxu Miao, Yu Wu and Yi Yang are with ReLER, the Aus-
tralian Artificial Intelligence Institute, University of Technology Syd-
ney. (email: jiaxu.miao@student.uts.edu.au; yu.wu-3@student.uts.edu.au;
yi.yang@uts.edu.au.)

Retrieval Results

Query Images

:| | Correct Results |

)
| Wrong Results !

;

Fig. 1. Failure cases of previous methods [2] when meeting the occlusion
situation.

Some partial re-id methods [5], [6], [7], [8] are proposed to
tackle the occlusion problem. The partial re-id assumes that
only query images contain occlusions, while all the gallery
images are non-occluded. The occluded query images are
manually cropped, and the visible part remains as the new
query images. Thus the partial re-id aims at searching the same
person in full-body appearance given only a partial probe im-
age. This is called the partial person re-id problem. Although
these partial re-id methods move a significant step towards
solving the occlusion problem, there are some limitations: (1)
The assumption that only probe images are occluded is too
strong and not always hold in practice. (2) They need manually
cropping, which is time-consuming, especially there are a
large number of occlusion images. Although some very recent
works [9], [10] do not require manually cropping, however,
they still assume that all the gallery images are non-occluded.

In this paper, we relax the assumption and suppose that
both probes and gallery images contain occlusions, namely the
occluded person re-id problem. Fig. 2 shows the comparison
between the partial and occluded re-id problem. Differently,
the gallery set in our setting contains both occluded images and
non-occluded images, which is in accordance with the practical
application. Our setting is more challenging since there are
difficult cases that both probe and gallery are occluded. Under
the new assumption of the occluded re-id, we construct a large-
scale dataset, Occluded-DukeMTMC, in which the gallery set
consists of both occluded and non-occluded images while all
probe images are occluded.

To tackle the challenging occluded person re-id problem, we
design a learnable person retrieval system by Convolutional
Neural Networks (CNN). A fundamental solution for the
occluded re-id is to depress the noise information brought
by occlusions. Thus, three specially designed NN modules
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for the occluded re-id are proposed, utilizing CNN features’
properties in the spatial and channel dimension. Spatially,
for CNN features, the information of the target person and
occlusions is located in the corresponding locations [11].
Thus an attention mask can help filter out the information
of occlusions. Channel-wisely, channels of the CNN features
contain different information [12] and re-calibration of the
channel feature can depress the occlusion information.

Concretely, we utilize a pre-trained human pose estimation
model to provide key-point landmarks, which are used to
improve the re-id framework in the following three aspects.

First, the pose estimation provides the location of the body.
If a part of a person is occluded, the corresponding landmark
is missing (with low confidence score) in the pose estimation
results. We then generate spatial masks based on the visible
landmarks and then filter the CNN feature maps by these
masks. Therefore, we can filter the noise information brought
by occlusions and makes our model focus on the body region
only. This is the Pose-Masked Feature Branch.

Second, estimated visible pose landmarks help to construct
more informative person features. Based on the information
that which body part is visible and which one is occluded,
we propose the Pose-Embedded Feature Branch to enhance
the learned features by dynamically adjusting the response
of the CNN channels. Specifically, we first generate a pose
embedding by the visible landmarks. Then the embedding is
utilized as gates to adaptively re-calibrate channel-wise feature
responses. By the gating operation, the related channels of the
visible parts are activated, while those channels of missed parts
are further depressed.

Third, in testing, the estimated pose indicates which regions
are informative and reliable for both probe and gallery images.
Then we explicitly split the extracted spatial feature into parts.
Only part features from those commonly visible parts are
utilized to calculate the distance in the retrieval. In this way,
we further reduce the impact of the occlusions.

In our conference version [13], we only focus on the spatial
information provided by the pose model, i.e., the Pose-Masked
Feature Branch and the matching on commonly visible parts.
However, these two modules are mostly based on hard spatial
operations. Although depressing the spatial feature where the
occlusions locate alleviates the occlusion problem in person re-
id, the conference version [13] ignores the critical information
of the feature channels. Motivated by SENet [12], in this
paper, we improve the previous method by introducing the
Pose-Embedded feature branch, which enhances features by
adaptively adjusting channel-wise feature responses based on
the visible parts. Concretely, we employ visible landmarks to
generate the channel weights, which are used to re-calibrate
the channel-wise feature responses and enhance the non-
occluded information. The re-calibration operation on the
channel dimension selectively emphasizes informative features
and suppresses less useful ones generated by occlusions.
Extensive ablation experiments show the effectiveness of this
new branch.

We conduct extensive experiments on five person re-
id datasets, including occluded, partial, and non-occluded
datasets. Results show that our method not only surpasses pre-
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Fig. 2. Comparison of the partial (above) and occluded re-id problem (below).

vious re-id approaches [5], [6], [7], [8] on occluded and partial
datasets, but also shows the superiority on two non-occluded
datasets. Our contributions are summarized as follows:

e We propose a large-scale occluded re-id dataset,
Occluded-DukeMTMC, which is facilitative for studies on the
occluded re-id problem.

e We design a learnable person retrieval system for the
occluded re-id, utilizing the properties of NN features in the
spatial and channel dimension.

e We propose the Pose-Masked Feature Branch, which
spatially removes the noise information brought by occlusions.

e We propose the Pose-Embedded Feature Branch, which
generates better re-id features by adaptively adjusting channel-
wise feature responses based on the visible parts.

e We propose only to consider the commonly visible parts
when calculating the distance for retrieval.

II. RELATED WORK

Deep Person Re-ID. With the development of deep
learning [14], many deep learning-based person re-id ap-
proaches [15], [16], [17], [18], [19], [20], [2], [3], [21], [1],
[22], [23], [24], [25], [26] have been proposed and show
significant superiority on retrieval accuracy. Some deep re-id
approaches use one global feature learned by the classification
loss [27], [28] or enhanced by the triplet loss [29] or the
quadruplet loss [30]. Recently, some part-based person re-id
approaches [2], [31], [32], [33], [34], [35], [36] have been
proposed. For instance, Zhao et al. [34] and Liu et al. [35]
employ an attention mechanism to extract partial features.
Kalayeh et al. [33] propose to utilize human parsing methods
and extract the feature for each human part. The final repre-
sentation is assembled by human-part features. Sun et al. [2]
propose PCB, which horizontally split the feature map for con-
structing partial features. Wang et al. [32] and Fu et al. [31]
partition multiple granularities of part features and further
improve the retrieval performance. However, when dealing
with the occluded re-id problem, these methods introduce the
distractive occlusion information and may fail when occlusion
occurs.

Partial Person Re-ID. Partial person re-id approaches [5],
[6], [7], [8] have been proposed for solving the occlusion
problem in person re-id. They assume that only probes contain
occlusions, while gallery images are all non-occluded. The
probes are manually cropped, and visible parts remain as
new probes. Thus, the partial person re-id aims at searching
a person with a partial image across non-occluded images.
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For instance, Zheng et al. [5] firstly define the partial re-id
problem. They propose local patch and global part matching
to tackle this problem. He et al. [7], [8] introduce DSR
and SFR, which use spatial feature reconstruction without
time-consuming feature alignment. Sun et al. [6] propose
visibility-aware part-level features for partial person re-id.
This model is based on PCB and partitions the feature map
horizontally. Then a region locater is learned to predict which
partial feature is visible. Part of our method is similar to this
paper. However, our method aims at solving the occluded re-id
problem, and all the occlusion images are not pre-processed
by manually cropping. Thus we use pose landmarks to indicate
the occlusion region while Sun et al. [6] use a learnable region
locater.

Occluded Person Re-ID. Recently some occluded person
re-id approaches [9], [10] have been proposed. These methods
have no manually cropping process and take as input the
occluded person images directly. Zhuo et al. [9] propose to
randomly simulate occlusion images in the training stage and
use a classifier to predict if the input image is simulated
or not. He et al. [10] propose Foreground-aware Pyramid
Reconstruction for the occlusion re-id. This is an alignment-
free method and achieves good performance. Although these
methods move a significant step towards solving the occluded
person re-id problem, they still assume that only probes are
occluded. There is no very hard case that one occluded
image is retrieved from occluded images. Our method relax
this assumption and propose a corresponding dataset for the
occluded person re-id.

Pose-Guided Person Re-ID. Pose landmarks are important
information in person images and benefit the person re-id
tasks. Many pose-guided methods [37], [38], [39], [40], [41]
for person re-id have been proposed to facilitate person re-
id models. These aforementioned pose-guided methods aim
at tackling the human pose variation in the person re-id.
Differently, our method employs landmarks for the occlusion
situation in re-id. One method et al. [42] uses the attention
mechanism [43] by pose information for the occlusion problem
in the detection task—differently, our method focuses on the
person re-id problem.

Object Tracking. Person re-id methods are also applicable
to the object tracking task [44], [45], [46], and vice versa. For
instance, The triplet loss [29] and quadruplet loss [30] can
be transferred to the tracking task [45], [46]. The occlusion
problem is also a critical problem on the tracking task, and
several approaches [47], [48], [49] for the occlusion problem
have been proposed. In this paper, we propose to use the
pose landmarks to depress the occlusion information, which is
applicable to the tracking task. However, since extracting pose
landmarks is time-consuming, efficiency should be considered
in the tracking task.

III. THE OCCLUDED-DUKEMTMC DATASET

We propose a large-scale occluded re-id dataset where both
the query and gallery images contain occlusions. The new
dataset is derived from DukeMTMC-relD [50], [51].

Properties of Occluded-DukeMTMC. Most previous
datasets [5], [52], [9] for the occlusion problem in person

TABLE I
COMPARISON OF THREE DATASETS ON THE OCCLUDED RE-ID PROBLEM.
Train Set Gallery Set Query Set
Identity [ Image [ Identity | Image [ Identity | Image
Partial-REID [5] - - 60 300 60 300
Partial-iLIDS [52] - 119 119 119 119
Occ-DukeMTMC 702 1,110 | 17,661 519 2,210

Dataset

15,618

re-id are under the assumption that only probes are occluded
while gallery images are non-occluded. This paper focuses
on a more general occlusion problem in that both probes
and gallery images contain occlusions. The gallery images
contain both occlusion images and non-occluded images,
according to the practical application. All the probe images
are occluded, following the previous setting [5], [52], [9].
Thus, there exist hard cases that an occluded person image is
compared with another occluded person image. Our setting is
more difficult and practical compared with previous occlusion
datasets [5], [52], [9]. Table. I shows the comparison be-
tween our Occluded-DukeMTMC and the previous occlusion
datasets [5], [52]. Our constructed Occluded-DukeMTMC is
the largest occluded re-id dataset to date. Previous datasets
for partial re-id [5], [52] contains only hundreds of person
images. Recently, Zhuo et al. [9] propose the Occluded-REID
dataset for the occluded re-id, containing 2000 person images.
Our Occluded-DukeMTMC contains 35,489 person images,
including 15,618 images of 702 identities in the train set,
17,661 images of 1, 110 identities in the gallery set and 2,210
images of 1, 110 identities in the query set.

Data Collection. Our Occluded-DukeMTMC is manu-
ally selected from DukeMTMC-reID [50], [51]. In the
DukeMTMC-relD dataset, the occluded person image is less
than 15% in the query set. Thus, it is not applicable to evaluate
the occluded re-id. We manually select all the occluded person
images from the query set and the gallery set in the original
DukeMTMC-reID to construct the new query set. For the
gallery set of our Occluded-DukeMTMC, we directly use the
gallery set of the original DukeMTMC-relD, which contains
10% occluded images. Therefore, there exist the same images
in query and gallery images. However, when evaluating the re-
id approaches, the images with the same camera are ignored.
Thus, there is no worry about retrieving the same image in the
gallery. The train set in the Occluded-relD is selected from
the train set of the original DukeMTMC-reID. In the train
set of DukeMTMC-relD, there are some images containing
exactly the same occlusions in the test set. These images may
make the re-id model “remember” these specific occlusions
and influence the generalization of the occluded re-id models.
Thus, we manually remove all these 934 images from the
DukeMTMC-relD dataset to construct the train set of our
Occluded-DukeMTMC.

IV. METHODOLOGY

This paper address the occluded person re-id problem. To
figure out which part of the person image is occluded, we
employ the pose landmarks to identify the visible parts. When
we extract pose landmarks, the landmarks in the occlusion
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region have a lower confidence score. Thus, we can obtain the
visible landmarks which contain the occlusion information.

We strengthen the occluded re-id by using the visible land-
marks in three aspects. First, the visible landmarks provide the
location of visible parts and are used to generate spatial masks,
which filter the noise introduced from occlusions. This is the
Pose-Masked Feature Branch. Second, the visible landmarks
contain the informative knowledge of occlusions, indicating
which part is occluded while which part is visible. Thus, the
visible landmarks are used to generate a pose embedding. The
pose embedding is used as gates to adaptively re-calibrate
channel-wise feature responses, selecting the visible channel
features and depressing the invisible ones. This is called the
Pose-Embedded Feature Branch. Third, in testing, the visible
landmarks indicate which region is occluded. The global
feature map is split into parts, and the commonly visible part
features are utilized for comparison between the query and
gallery images.

A. Preliminaries

The pipeline of our method is shown in Fig. 3. The
backbone architecture of our method is ResNet50 [53], which
removes the last average pooling layer and fully connected
layers, following previous re-id approaches [2], [6]. Taking a
person image [ with a size of H x W as input, the original
ResNet50 outputs a feature map with a spatial dimension of
H /32 x W/32. For extracting a more informative feature map,
we enlarge the spatial size of the extracted feature map to
H/16 x W/16, by changing the stride of conv4_1 to 1 [2],
[31]. A larger spatial feature map makes it easier to split the
target person from the occlusions. The extracted feature map
is denoted as F.

B. Visible Landmarks Detection

As shown in Fig. 3, given a person image I, the pose
landmarks are extracted by a human pose estimator, which
is pre-trained on the COCO dataset [54]. Denote the number
of the extracted pose landmarks as N, where N = 18 in
this paper. The output of the pose estimator is the coordinates
and confidence score of each landmark. When a landmark is
occluded in the person image, the confidence score of the
landmark is low. Thus, by setting a threshold v, we can
filter out the invisible landmarks and obtain visible human
landmarks. ! The visible landmarks contain the informative
knowledge of the occlusions in the person image.

We utilize the location information of the visible landmarks
for generating spatial masks in the Pose-Masked Feature
Branch. Formally, the locations of the pose landmarks are

b _ {(cx.,»,cy» it 55 >
-

i=1,...
0 else Y

N),

where S’;O”f and v denote the confidence score and the
threshold, respectively. P; denotes the jth landmark loca-
tion and czj,cy; denote the coordinate of the jth landmark,

"When a person is occluded by another one, we choose the person with a
larger number of visible landmarks as the target person.

7 = 1,..., N. Thus, we obtain visible landmarks P with the
spatial location information.

For generating the pose embedding that contains the oc-
clusion information in the Pose-Embedded Feature Branch, a
visible landmark vector p € {0, 1}V is generated,

)1
p; = 0

where S;O"f and ~y denote the confidence score and the thresh-
old, respectively. Each element p; of the visible landmark
vector p denotes if the jth landmark is occluded or not. Thus,
the visible landmark vector p is an encoding of the occlusion.
We use p to generate the pose embedding, which encodes
the occlusion information into the representation features to
benefit the occluded re-id problem.

if S5 >

else,

2)

C. Pose-Masked Feature Branch

As shown in Fig. 3, the final pose-guided feature is obtained
by a concatenation of three components, including the pose-
masked feature in the Pose-Masked Feature Branch, the pose-
embedded feature in the Pose-Embedded Feature Branch, and
the global max-pooling feature of the feature map F.

In the Pose-Masked Feature Branch, we use the positions of
visible landmarks P to generate spatial masks. For the visible
pose landmarks, which means P; = (cz;, cy;), the generated
pose mask is a Gaussian heatmap with the center at (cx;, cy;).
For the invisible landmarks, where P; = 0, the spatial pose
mask is set to 0. Denote each pose mask as M, j = 1,..., N.
The pose masks M are downsampled to the spatial size of F
by bi-linear interpolation. The feature map F multiply each
pose mask M; to generate N pose-masked feature maps M;,
7 = 1,...,N. The pose-masked feature maps filter out the
occlusion parts and focus on the visible body parts, which
depresses the information of the occlusions.

The pose-masked feature maps are fed into a max-pooling
layer to generate N pose-masked feature vectors. Then N
pose-masked feature vectors are max-pooled to generate one
pose-masked feature f,,,,, as shown in Fig. 3. We utilize max-
pooling instead of average pooling because the max-pooling
operation ignores the occluded parts and redundant visible
body parts indicated by pose landmarks.

D. Pose-Embedded Feature Branch

In the Pose-Embedded Feature Branch, we use the visible
landmark vector p to generate the pose embedding. The pose
embedding is used as channel gates for the global feature.
Since the dimension of p is small (18) while the dimension
of the global feature map F is large (2,048), it is hard to
encode the pose embedding properly. Thus we utilize a 1 x 1
convolutional layer to reduce the channel dimension of F, and
generate a new feature map F’ with the channel dimension of
1,024. We take as input p and use an embedding encoder
network with two fully-connected layers and a sigmoid ac-
tivation layer in the end to generate the pose embedding p’.
The pose embedding p’ is used as channel gates and multiplies
F’ channel-wisely to generate the pose-embedded feature map
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Fig. 3. The pipeline of the proposed method. Red and green points indicate visible and invisible landmarks, respectively. Our model contains three branches.
In Pose-Masked Feature Branch, we generate Gaussian maps to filter out occlusions. In the Pose-Embedded Feature Branch, we obtain the pose-embedding
by the visible landmark vector. These embeddings are further used to generate channel gates, which control the response of channels by the channel-wise
multiplication. In Partial Feature Branch, we uniformly split the extracted feature map into parts for generating part features.

F,.. A max-pooling layer is employed to generate the pose-
embedded feature f,,.. The pose-embedded feature f,,. encodes
the occlusion information implicitly.

Occlusion Simulation. In our setting, the query and gallery
sets contain plenty of occlusion images. However, the train set
contains a few occlusions, resulting in insufficient varieties of
the visible landmark vectors. Thus, we simulate the occluded
person images in the train set and generate corresponding
visible landmark vectors p, which improves our model to learn
the knowledge of occlusions. The occluded person images
are simulated by randomly erasing the person images. The
landmarks in the erased areas are annotated as invisible
landmarks.

E. Optimization

The pose-guided feature is obtained by a concatenation of
three components, including the pose-masked feature f,. in
the Pose-Masked Feature Branch, the pose-embedded feature
f,m in the Pose-Embedded Feature Branch, and the global
max-pooling feature f; of the feature map F.

We reduce the dimension of the concatenated feature to 256
by a fully connected layer and obtain the pose-guided feature
frose. A fully connected layer and a softmax layer are used to
predict the identity of the person image. Denote the prediction
of these two pose-guided branches as y. The loss function of
these pose-guided branches are

‘Cpose = CE(yAa y) ) (3)

where g is the prediction, y is the ground truth and C'E is the
cross-entropy loss.

Except for the Pose-Masked Feature Branch and the Pose-
Embedded Feature Branch, we also use a Partial Feature
Branch to obtain the discriminative part features, as shown
in Fig. 3. In the Partial Feature Branch, the partial feature
maps F; are obtained by splitting the feature map F into p

parts, ¢ = 1, ..., p. Then the partial feature map F; is fed into
an average pooling layer to generate the partial feature vector
f;. We reduce the dimension of the partial feature vector f; to
256. We use a fully connected layer and a softmax layer to
predict the identity of the person image. Thus, we can obtain
the objective function for the Partial Feature Branch L.+ by
P
Lpare = Y CE(§i,y), €
i=1

where y; is the prediction based on the i-th part. The total
objective function L is a linear combination of the two losses,

L= )\‘Cpart + (1 - )\)Epose ) (5)

where X denotes a coefficient to balance L+ and Lpose.

F. Feature Matching in Commonly Visible Parts

Fig. 4 shows the matching strategy in testing. In Fig. 4, the
visible pose landmarks indicate the visible partial features. The
part containing at least one visible landmark is annotated as a
visible part. Thus, we can compare the probe and gallery im-
ages using partial features in the commonly visible parts. This
operation filters out the distractive information of occlusions.
Besides, we also use the constructed pose-guided feature for
distance computation. We average the distances calculated by
visible partial features and the pose-guided feature.

Formally, for a partial feature f;, ¢ = 1, ..., p, we can obtain
a visible label ; € {0,1} which represents if this part is
occluded or not. For each body part i,

1 if 3ey; € [5HH, LH)
0
where cy; is the jth longitudinal coordinate of landmark P

and H is the height of the image. The distance of the ith part
between the query and gallery is,

190

P =

(6)

else

(7
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Fig. 4. Matching strategy of our method. The partial features in the commonly
visible parts and the pose-guided feature are used for distance computation.

where D(-) is the cosine distance function, f, f/ are the ith
partial feature of the probe and gallery images, respectively.
Besides, we compute the pose-guided distance by,

dpose = D(fp fg ) 3 (8)

pose’ *pose

where igose, pose are the pose-guided feature of the probe and
gallery images, respectively.

The total distance is computed by averaging the distances
of the partial feature in the commonly visible parts and the
pose-guided feature.

2 19)d; + dpose
A0 o

111

dist =

where dist denotes the final distance, lf and [/ are the ith
visible indicator of the probe and gallery images, respectively.

V. EXPERIMENTS
A. Datasets and evaluation metrics

We evaluate our method on five datasets, including oc-
cluded, partial, and non-occluded re-id datasets.

Occluded-DukeMTMC is our proposed occluded re-id
dataset, which consists of 15,618 images in the train set,
17,661 images in the gallery set, and 2,210 images in the
query set. Evaluation on this dataset illustrates the effective-
ness of our approach on the occluded re-id task. Partial-
REID [5] is a partial re-id dataset, with 600 person images
of 60 identities. 300 person images are occluded, while 300
person images are non-occluded in Partial-REID. Partial-
iLIDS [52] is a simulated partial re-id dataset including 238
person images of 119 person identities. Each ID contains an
occluded person image and a non-occluded person image,
respectively. For Partial-REID and Partial-iLIDS, in partial
re-id approaches, the occluded images are cropped, and the
visible parts are collected as new query images. In our set-
ting, the cropping process is unnecessary. Market-1501 [55]
consists of 32,668 images of 1,501 person identities. Most of
these images are non-occluded. Thus, Market-1501 is a non-
occluded re-id dataset. DukeMTMC-reID [50], [51] consists
of 36,411 person images of 1,404 identities. There exists

TABLE 11
RESULTS ON OCCLUDED-DUKEMTMC.

Method [ Rank-1 | Rank-5 | Rank-10 | mAP
DIM [56] 21.5 36.1 42.8 14.4
LOMO+XQDA [57] 8.1 17.0 22.0 5.0
Part Aligned [34] 28.8 44.6 51.0 20.2
Random Erasing [58] 40.5 59.6 66.8 30.0
HACNN [59] 344 51.9 59.4 26.0
Triplet [29] 35.5 52.8 61.1 27.0
Aligned reID [60] 41.5 58.8 65.7 32.7
Adver Occluded [61] 44.5 - - 322
PCB [2] 42.6 57.1 62.9 33.7
Part Bilinear [41] 36.9 - - -

FD-GAN [37] 40.8 - - -

DSR [7] 40.8 58.2 65.2 30.4
SFR [8] 42.3 60.3 67.3 32.0
PGFA [13] 51.4 68.6 74.9 37.3
Ours 56.3 72.4 78.0 43.5

TABLE III

INFERENCE SPEED ON OCCLUDED-DUKEMTMC. THE INFERENCE TIME
IS THE SECONDS PER QUERY.

Method Time [ Method — Time
PGFA /0 pose [13] 0.13s | PCB [2] 0.09s
PGFA,,, pose [13] 0.78s | DSR [7] 4.54s
Ourswio pose 0.14s | SFR [8] 4.76s
Oursy/ pose 0.79s | - -

some occluded images in DukeMTMC-reID. However, the
query set of DukeMTMC-reID only contains less than 15%
occluded images. Thus, DukeMTMC-reID can be viewed as
a non-occluded dataset.

Evaluation Metrics. For performance evaluation, we utilize
the standard metrics as in most person re-id approaches,
including the cumulative matching cure (CMC) and the mean
Average Precision (mAP).

B. Implementation Details

We utilize AlphaPose [65], [66] pre-trained on the COCO
dataset [54] as our human pose estimator. The threshold -y is
set to 0.2. The backbone of our method is ResNet50 [53] and
initialized by an ImageNet [67] pre-trained model. During the
training procedure, the input image is resized to 384 x 128,
following previous re-id approaches [2], [10]. We use random
flipping to augment the training images. Besides, we randomly
erase part of the input image to simulate the occlusion im-
ages [58], and the landmarks in the erased part are labeled as
the occluded landmarks. Thus we can generate corresponding
visible landmark vectors and enlarge the varieties. We use a
batch size of 32, and train the model for 60 epochs. On the
three large-scale datasets, i.e., Occluded-DukeMTMC, Market-
1501, and DukeMTMC-relD, the initial learning rate is set to
0.1 and reduced by a factor of 10 in the last 20 epochs. The
parameter A is 0.5. On the two small partial re-id datasets,
Partial-REID and Partial-iLIDS, the learning rate is 0.02,
reduced by a factor of 10. The initial A is 0.9.

C. Comparison to the State-of-the-Art methods

Evaluations on Occluded-DukeMTMC. As shown in Ta-
ble. II, the first group shows the approaches for the non-
occluded re-id. The second group shows the methods of
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TABLE IV
RESULTS ON PARTIAL-REID AND PARTIAL-ILIDS.

Method Partial-REID Partial _iLLIDS
Rank-1 | Rank-3 | Rank-1 | Rank-3
MTRC [62] 23.7 27.3 17.7 26.1
AMC+SWM [5] 37.3 46.0 21.0 32.8
DSR [7] 50.7 70.0 58.8 67.2
SFR [8] 56.9 78.5 63.9 74.8
VPM [6] 67.7 81.9 67.2 76.5
PGFA [13] 68.0 80.0 69.1 80.9
Ours 72.5 83.0 70.6 81.3
TABLE V

RESULTS ON MARKET-1501 AND DUKEMTMC-REID.

Method Market-1501 DukeMTMC-relD
Rank-T | mAP [ Rank-1 | mAP
SVDNet [3] 82.3 62.1 76.7 56.8
BoW-+kissme [55] 44.4 20.8 25.1 12.2
PAN [50] 82.8 63.4 71.7 51.5
PAR [34] 81.0 63.4 - -
Pedestrian[63] 82.0 63.0 - -
DSR [7] 83.5 64.2 - -
MultiLoss [15] 83.9 64.4 - -
TripletLoss [29] 84.9 69.1 - -
Adver Occluded [61] 86.5 78.3 79.1 62.1
MLEN [64] 90.0 74.3 81.0 62.8
PCB [2] 92.4 71.3 81.9 65.3
PGFA [13] 91.2 76.8 82.6 65.5
Ours 92.7 81.3 86.2 72.6

using human pose information. The third group shows the
partial re-id methods. PGFA [13] in the fourth group denotes
our conference version for the occluded re-id. Our method
surpasses all the previous methods by a large margin.

The partial feature branch of our method is similar to
PCB [2]. The difference between PCB and our methods is
that our method utilizes visible landmarks to encode the
occlusion information into the feature representation, and use
part features in the commonly visible parts for comparison
during matching. The feature comparison in the visible shared
region explicitly depresses the occlusion part in the occlusion
images. Compared with PCB [2], our method surpasses it by
+13.7% Rank-1 accuracy and +9.8% mAP, demonstrating the
effectiveness of our proposed strategies.

Compared with our conference version, PGFA [13], this pa-
per proposes the Pose-Embedded Feature Branch, which uses
the visible landmark vector to generate the pose embedding.
To generate larger varieties of the visible landmark vectors,
we simulate the occlusion images in the training set. The
result shows that adding the pose embedding improves Rank-
1 accuracy from 51.4% to 56.3% (+4.9%), while improves
mAP from 37.3% to 43.5% (+6.2%), which demonstrates the
effectiveness of the Pose-Embedded Feature Branch.

We compare the inference speed of our method with the
baseline method PCB [2], the partial re-id methods (DSR [7],
and SFR [8]) and the conference version PGFA [13], as shown
in Table. III. “w/ pose” or “w/o pose” indicate the method
with or without the pose extracting. Table. III shows that our
method is slightly slower than the conference version PGFA
because of adding the Pose-Embedded Branch. Extracting
the pose landmarks is time-consuming; thus, it is better to

TABLE VI
THE EFFECTIVENESS OF THE POSE EMBEDDING, THE POSE-MASKED
FEATURE BRANCH AND THE MATCHING STRATEGY.

Method [ Rank-1 | Rank-5 | Rank-10 | mAP
Oursy/o sim wio pe 514 68.6 74.9 37.3
OurSyo pe 32 | 694 753 | 405
OUTSw/o sim 54.1 69.6 752 | 403
OUrSyw/o pm 5.0 705 767 | 415
Oursy/o matching 51.2 62.4 734 41.2
Ours 56.3 72.4 78.0 43.5

extract the landmarks in advance in practice. Our method is
much faster than the partial re-id methods (DSR and SFR)
because there is no time-consuming feature map matching
during inference in our method.

Evaluations on Partial-REID and Partial-iLIDS. Some
partial re-id approaches [62], [5], [7], [8], [6] are proposed for
the partial re-id and evaluated on Partial-REID and Partial-
iLIDS. To illustrate the effectiveness of our method on the
partial re-id, we compare the results with these methods.
We use the train set of Market-1501 for training, following
previous methods [7], [8], [6]. As shown in Table. IV, our
method surpasses previous partial re-id methods [62], [5],
[71, [8], [6] on both Partial-REID and Partial-iLIDS datasets.
Compared with our previous PGFA [13], adding the pose
embedding improves the performance in these two datasets.

Evaluations on Market-1501 and DukeMTMC-relD.
Table.V shows the results of our model on non-occluded re-
id datasets, Market-1501 and DukeMTMC-reID. Our method
achieves better results than the state-of-the-arts. The results
show that our method can handle not only the occluded re-id
but also the non-occluded re-id problem.

D. Ablation Studies

The Effectiveness of the Pose-Embedded Feature
Branch. Compared with our conference version, PGFA [13],
this paper proposes to use the visible landmark vector to
generate the pose embedding. The pose embedding contains an
informative knowledge of occlusions and is used to construct
the pose-guided feature. To generate larger varieties of the
visible landmark vectors, we simulate the occlusion images
randomly. In Table. VI, Oursy/, sim wio pe denotes our method
without both data simulation and the pose embedding, which
is the same as PGFA [13]. OurSy, pe and Oursyy, sim denote
our method without the pose embedding and data simulation,
respectively. Results show that even without the data simula-
tion, adding the pose embedding can improve mAP by +3.0%.
Utilizing the data simulation can further improve mAP by
+3.2%. Thus, both data simulation and the pose embedding
take effects in our method.

The Effectiveness of the Pose-Masked Feature Branch.
The Pose-Masked Feature Branch filter out the noise of
occlusions by pose masks. In Table. VI, Oursy/, pm is our
method without the pose-masked feature. Using the pose-
masked feature improves Rank-1 from 55.0% to 56.3% and
mAP from 41.5% to 43.5%, demonstrating its effectiveness.

The Effectiveness of the Commonly Visible Parts Match-
ing Strategy. The commonly visible parts matching strategy
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Fig. 5. (a) Varying Trade-off Coefficients A. A = 0 means only using the

pose-guided feature. A = 1 means only using the partial features with our
matching strategy. (b) The impact of the part number p.

TABLE VII
COMPARISON ABOUT MULTIPLE GRANULARITIES.

Method [ Rank-1 | Rank-5 | Rank-10 | mAP
=23 543 708 773 | 423
p=3,4 56.3 722 78.1 43.6
Ours (p = 3) 56.3 72.4 78.0 43.5

employs visible landmarks to select visible partial features.
The distractive features from occlusion regions are filtered
out. To illustrate the effectiveness of the matching strategy
in testing, we evaluate our model using all the partial features
for comparison. In Table. VI, Oursy/, maching 1S our method
without the commonly visible parts matching strategy. The
result without the matching strategy achieves 51.2% Rank-1
accuracy and 41.2% mAP. Thus, utilizing this strategy during
matching improves Rank-1 by +5.0% and mAP by +2.3%.

Varying the Loss Coefficient. The final loss consists of two
parts, Lpqr+ and Lpose, corresponding to the impacts of partial
features and the pose-guided feature. The coefficient A balance
the contributions of L4+ and L,,s.. We conduct an ablation
study on the coefficient A, and A grows from 0 to 1. A =0
means only the pose-guided branches take effect while A = 1
means only the Partial Feature Branch takes effect. As shown
in Fig. 5 (a), when 0 < A < 1, the retrieval performance is
higher than A = 0 or A = 1. Thus, using a multiple-branch
architecture performs better than only one of these branches.
When A\ = 0.5, our method achieves the best performance.

The Impact of the Part Number p. p determines the
granularity of the part features. p = 1 means that our method
uses a global feature instead of partial features. In Fig. 5
(b), the retrieval performance is higher when p > 1 than
p = 1, illustrating that the partition strategy is helpful to
generate more robust features and split the occlusions and
the target person. When p = 3, our method achieves the
best performance. When p is too large (p > 3), some partial
feature is too small and doesn’t contain the visible landmarks,
although it is the visible part. Thus, the informative partial
feature of the target person is filtered out. We also compare
our method with methods [31], [32] that horizontally partition
the feature map with multiple granularities. As shown in
Table. VII, p = 2,3 means the feature map is partitioned
into two parts and three parts simultaneously, with a total
of five classifiers to optimize. p = 3,4 means the feature
map is partitioned into three parts and four parts. Results
show that multiple granularities achieve similar performance
in our setting. One possible reason is that some partial features
of multiple granularities are filtered out by landmarks when
facing the occlusion problem and do not take effect.

The Impact of the gaussian heatmap. Fig. 6 (a) shows the

TABLE VIII
COMPARISON OF HUMAN POSE ESTIMATORS.

Method [ [ Rank-1 [ Rank-5 | mAP
Oursw/(, sim w/o pose 514 68.6 37.3
AlphaPose [65]| OursSwo sim 54.1 69.6 40.3
Ours 56.3 72.4 43.5
Oursw/r) sim w/o pose 49.1 66.7 353
OpenPose [68] | Ourswo sim 52.3 67.6 38.5
Ours 54.3 71.2 41.2
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Fig. 6. (a) Impact of the sigma of the gaussian heatmaps. (b) Impact of the
input resolution.

impact of the parameter o of the gaussian heatmap. When o
is small, the visible area in the generated Gaussian heatmaps
is small (Only the small area around the visible landmarks is
non-zero). Thus the useful information from the Pose-Masked
Branch is limited, and the performance is affected. When o is
large, the heatmaps cannot filter out the occluded parts, since
most part of the heatmap is close to 1. We choose o = 20 in
this paper for the best performance.

Fig. 6 (b) shows the impact of the heatmap resolution. When
enlarging the input resolution from 384 x 128 to 480 x 160
and 570 x 190, the models achieve similar performance. This
indicates that enlarging the heatmaps with the same ¢ does not
affect the re-id performance. When the resolution is reduced,
the performance drops because of the information drop.

The Impact of the Pose Estimation Algorithm. Previous
experiments use AlphaPose [65] as the human pose estimator.
To evaluate the sensitiveness of our method to the human pose
estimator, we evaluate our method using OpenPose [68]. As
shown in Table. VIII, using two pose estimators achieve sim-
ilar performance, illustrating that our method is not sensitive
to the pose estimation algorithms on Occluded-DukeMTMC.

E. Visualization

Fig. 7 shows the visualization of the pose masks generated
by the visible landmarks. The pose masks focus on the visible
parts of the target person in the image, while the occlusions
are depressed. Fig. 8 shows some evaluation results of PCB [2]
and our method on Occluded-DukeMTMC. The PCB method
tends to introduce the distractive information of the occlusions,
and a probe occluded by an obstacle is easy to retrieve
incorrect images with a similar obstacle. Compared with PCB,
our method filters out the information of the occlusions and
achieves better performance.

VI. CONCLUSION

This paper focuses on the occluded person re-id problem. In
our setting, all images in the query set are occluded, while the
gallery set contains both occluded and non-occluded images,
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Fig. 8. Visulization of the retrieval results on PCB [2] and our method.

which is more challenging and practical. We propose to benefit
the occluded re-id by pose landmarks in three aspects. First, we
use the spatial location information of the visible landmarks
to filter the noise of occlusion regions. Second, we use visible
landmarks to generate the pose embedding, which is used as
the channel gates to re-calibrate the channel features. Third,
in testing, the commonly visible part features are used for
comparison. Besides, we construct a large-scale occluded re-
id dataset, Occluded-DukeMTMC.
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