
JOURNAL OF TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Learning with Noisy Labels via
Self-Reweighting from Class Centroids

Fan Ma, Yu Wu, Xin Yu, Yi Yang

Abstract—Although deep neural networks have been proved
effective in many applications, they are data hungry and training
deep models often requires laboriously labeled data. However,
when labeled data contain erroneous labels, they often lead to
model performance degradation. A common solution is to assign
each sample with a dynamic weight during optimization, and
the weight is adjusted in accordance with the loss. However,
those weights are usually unreliable since they are measured by
the losses of corrupted labels. Thus, this scheme might impede
the discriminative ability of neural networks trained on noisy
data. To address this issue, we propose a novel reweighting
method, dubbed self-reweighting from class centroids (SRCC),
by assigning sample weights based on the similarities between the
samples and our online learned class centroids. Since we exploit
statistical class centers in the image feature space to reweight
data samples in learning, our method is robust to noise caused
by corrupted labels. In addition, even after reweighting the
noisy data, the decision boundaries might still suffer distortions.
Thus, we leverage mixed inputs that are generated by linearly
interpolating two random images and their labels to further
regularize the boundaries. We employ the learned class centroids
to evaluate the confidence of our generated mixed data via
measuring feature similarities. During the network optimization,
the class centroids are updated as more discriminative feature
representations of original images are learned. In doing so, SRCC
will generate more robust weighting coefficients for noisy and
mixed data, and facilitates our feature representation learning in
return. Extensive experiments on both the synthetic and real
image recognition tasks demonstrate that our method SRCC
outperforms the state-of-the-art on learning with noisy data.

Index Terms—Self-Reweighting, Centroids, Noisy Labels

I. INTRODUCTION

Convolutional Neural Networks (CNN) have achieved great
success in many fields, such as computer vision [1] and
reinforcement learning [2]. However, training deep neural
networks often requires laboriously labeled data in order to
achieve promising performance. However, human annotations
inevitably involve erroneous labels. This would significantly
degrade model performance if many noisy labels exhibit in a
training set [3].

Noisy labels are commonly encountered in practical com-
puter vision and machine learning tasks. Existing datasets
collected by search engines [4], [5], [6] or annotated by
crowdsourcing systems [7] usually contain a large number of
noisy labels. In addition, there are also many erroneous labels

Manuscript received May 06, 2021; revised Sep 03, 2020 and Mar 23, 2021;
accepted Mar 31, 2021.

The authors are with the ReLER Lab, University of Technology Syd-
ney, Sydney, NSW 2007, Australia, and also with the Australian Artifi-
cial Intelligence Institute, University of Technology Sydney, NSW 2007,
Australia (e-mail: fan.ma@student.uts.edu.au; yu.wu-3@student.uts.edu.au;
xin.yu@uts.edu.au; yi.yang@uts.edu.au).

dog

cat

car

Asymmetric noiseSymmetric Noise

Fig. 1: Training samples of different noise types. Noise
samples are marked with red boxes. Falsely annotated labels
with symmetric noise could belong to any other classes in the
training set. In asymmetric noise, noise samples are only from
a certain class.

even in manually annotated datasets as annotators may label
data by mistake [8], [9], [10], [11]. Noisy labels in general
handicap the performance of deep networks in two aspects:
First, the increasing number of incorrectly annotated samples
may lead to sampling effective samples insufficiently for
training networks. Second, these noisy samples will harm the
model optimization process by providing incorrect supervision
signals. Therefore, learning with noisy data is a critical and
challenging task [12], [13], [14], [15].

A common solution is to assign a dynamic weight to each
sample when calculating the overall training loss. Impacts
of noisy labeled data will be potentially reduced in training
when they are weighted with smaller weights [7]. For instance,
assigning zero weights to falsely annotated samples in Fig. 1
prevents a model learning from fallacious supervision signals.
Current methods generate sample weights solely based on the
losses of training samples [3], [13], [16]. Specifically, a large
training loss may imply that a sample is incorrectly annotated
and thus a small weight will be assigned to the sample [13].
However, a model often fits the data well to achieve small
training losses. The model will assign large weights to noise
samples with small losses. In this case, the assigned weights
become unreliable as small weights should be produced.

We propose a novel reweighting method, namely self-
reweighting from class centroids (SRCC), to ameliorate the
weight assignment for noisy data. For each sample, we gen-
erate the weight by exploiting all training samples. To be
specific, we first calculate the centroid of each class in the
feature space. Then, the similarities between samples and
class centroids are calculated to produce sample weights.
Furthermore, the decision boundaries might still suffer distor-
tions even after reweighting the noisy data. We thus leverage
mixed inputs that are generated by linearly interpolating two

JOURNAL OF TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

random images and their labels to regularize the boundaries..
Unlike the setting in [17], our data labels are noisy, and it is
detrimental to train a model with directly interpolated labels.
We leverage our learned robust class centroids to evaluate the
confidence of the generated mixed data. The confidence of a
mixed input is determined by the feature similarities between
the mixed input and class centroids. In this fashion, assigning
the sample weights of mixed inputs also takes all the data into
account rather than two input labels that might be noisy. Our
SRCC thus improves the reliability of sample weights and
alleviates erroneous supervision signals caused by corrupted
mixed inputs in training.

As the model optimization proceeds, sample features as
well as the centroids of all classes will be updated. However,
using all training samples to update class centroids at every
training iteration requires a tremendous computational cost. In
this paper, we propose a momentum based scheme to update
class centroids in an online fashion, where only the features of
training samples in a batch are used to update the centroids.
During the optimization, we update the class centroids and
the model parameters alternatingly. The effectiveness of our
proposed method is analyzed to show the superiority of our
algorithm. We have also conducted extensive experiments to
validate the robustness of the proposed method. Experiments
on both the synthetic and real image recognition tasks demon-
strate that our SRCC outperforms the state-of-the-art methods.

Above all, our contributions are summarized in the follow-
ing three-fold aspects:
• We propose a simple yet effective self-reweighting from

class centroids method (SRCC) to address samples with
erroneous labels in deep network optimization. To reduce
the impact of corrupted labels, we generate a robust
sample weight for each sample based on its feature
similarity to the class centroids.

• Our SRCC assigns the mixed data with weights based
on their confidences belonging to different classes and
thus mitigates the problem of noisy mixed labels. To
the best of our knowledge, our work is the first attempt
to exploit mixed data with noisy labels to enhance the
generalization of deep networks..

• Extensive experimental results on the CIFAR10, CI-
FAR100, Tiny-ImageNet and Clothing1M datasets
demonstrate that our method achieves promising clas-
sification performance as well as a plausible network
generalization ability on the test set.

II. RELATED WORK

Conventional Statistical Learning. Statistical learning has
provide a theoretically sound foundation to the problem of
learning from noisy labels [12]. It addresses the issue from
three different perspectives: surrogate losses, noise rate estima-
tion, and probabilistic modeling. Manwani et al. [18] showed
that the risk minimization under the 0-1 loss function has
impressive noise-tolerance properties from the surrogate loss
perspective,. Liu et al. [19] and Menon et al. [20] proposed
class-probability estimators using order statistics on prediction
scores in terms of noise rate estimation. From the probabilistic

modeling perspective, Raykar et al. [12] introduced a two-
coin model to handle noisy labels. However, these traditional
methods mainly focus on exploring the distribution of noisy
labels, but neglect the representation learning of data. In
our proposed method, both supervision signals and feature
representation learning are taken into account.

Robust Losses in Deep Learning. Robust losses have
been proved useful in learning with noisy labels [21]. Lv
et al. [22] proposed a curriculum loss to adaptively select
samples in training. Zhang et al. [23] proposed a generalized
cross-entropy loss (GCE) combining MAE (Mean Absolute
Error) and CE losses to deal with noisy labels. Wang et
al. [24] proposed a Reverse Cross-Entropy (RCE) to facilitate
robust learning. Amid et al. [25] presented a Bi-Tempered
loss, where two tunable temperatures are contained in the
softmax layer and CE loss. Xu et al. [26] provided a novel
information-theoretically robust loss function different from
the distance-based loss as aforementioned. Although the robust
loss encourages deep models to learn feature representations
from noisy data, these approaches are effective only for certain
types of noisy data. In contrast, our proposed method does not
need to know noise types in advance and thus can be applied
in practical scenarios.

Sample Reweighting. Sample reweighting has attracted
increasing interest in recent years and achieved appealing per-
formance on many practical problems [3], [13], [27]. The main
idea is to introduce sample weights for the loss calculation,
and iteratively update these weights during training [13], [28],
[29], [30], [31]. Meng et al. [32] found that a monotonically
decreasing weighting function makes the reweighting learn-
ing process equivalent to optimizing an implicit robust loss
function. Inspired by meta-learning [33], more complicated
sample reweighting schemes have been recently proposed [3],
[13] by employing extra validation samples. Nevertheless, all
these reweighting methods generate sample weights based
on individual training losses, but neglect the fact that losses
of incorrect labels may provide the misguided weights once
a model overfits the training data. As class centroids are
more robust to noisy data, we propose a weight assignment
scheme by measuring the similarities between samples and
class centroids, and thus achieve more reliable sample weights.

Data Augmentation Data augmentation methods have been
designed to improve generalization performance in many ap-
plications [34], [35], [36]. Earlier works [37] use the random
flipping and cropping to increase the variations of training
images. Random occlusion techniques, such as random eras-
ing, are introduced in [34], [38] to improve image recog-
nition accuracy. Rather than operating on a single image,
MixUp [17] interpolated paired inputs and their targets. To
prevent manifold intrusion in MixUp, AdaMixUp learned a
mixing policy [39], while Manifold MixUp [40] produced
mixed representations in hidden layers. All these mixed meth-
ods assume that the mixed label is a linear combination of
input labels. However, when noisy labels exist in the data,
the mixed samples generated by the above methods would be
assigned with wrong labels, thus degrading the performance.

JOURNAL OF TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

III. PRELIMINARIES

In this section, we first review the empirical risk minimiza-
tion (ERM) and the sample reweighting framework. Then, we
present the objective function of MixUp.

A. Empirical Risk Minimization

Suppose training samples, {(x1, y1), . . . , (xN , yN)} ∈ D
are drawn i.i.d. from an unknown training distribution P ,
where xi and yi represent the ith input image and the label,
respectively. N indicates the number of the training samples.
Let F(θ) be a prediction function with parameters θ, mapping
the input xi ∈ Rd into the output label F(xi; θ) ∈ RK . The
objective of the risk minimization (RM) is:

min
θ

E
(xi,yi)∼P

`(F(xi; θ), yi), (1)

where `(·) is the loss function. Eqn. (1) is empirically approx-
imated by the training data D:

min
θ

1

N

N∑
i=1

`(F(xi; θ), yi). (2)

As indicated in Eqn. (2), the empirical risk minimiza-
tion (ERM) assigns the same weight to all training data during
optimization. However, the noise labels will handicap the
model optimization severely if they are treated equally as the
clean data. To alleviate the impact of corrupted data, a sample
reweighting scheme is introduced to the ERM optimization,

min
θ

N∑
i=1

vi`(F(x̃i; θ), ỹi), s.t.

N∑
i=1

vi = 1, (3)

where vi is a weight ranging from 0 to 1 for sample xi. It
represents the confidence that sample xi is correctly labeled.
By assigning large weights to correctly labeled samples and
small weights to noise data, we can reduce the impacts of inac-
curate training losses caused by corrupted labels. Note that, the
sample weights in previous studies are either determined by
manually defined weight functions [41], [16], [42] or learned
from extra clean data [13], [3]. To be specific, the weight of
each sample is first calculated based on the sample loss and
then normalized to ensure the sum of all the sample weights
to be 1. However, since the labels are noisy and weights are
solely computed based on sample losses, the generated sample
weights might be unreliable and fail to tackle noisy data.

B. MixUp

In ERM, deep models are prone to overfit training examples.
When noisy labels exist in the training data, overfitting will
worsen the generalization performance of deep networks. As
the number of clean samples decreases, the performance and
generalization ability of deep models will degrade. To improve
the model discriminative capacity, MixUp [17] feed mixed
inputs that are linearly interpolated from two random images
to our model. By doing so, the model is able to regularize the
decision boundaries and thus boost the model generalization

and classification performance. The objective function for the
mixed data input is written as,

min
θ

E
(xi,yi)∼P

E
(xj ,yj)∼P

E
λ∼Beta(α,α)

`(F(gmix(xi, xj , λ); θ), gmix(yi, yj , λ)),
(4)

where gmix(a, b, λ) = λ · a + (1 − λ) · b is a mix function.
Similar to [17], the coefficient λ follows the distribution
Beta(α, α). The hyper-parameter α controls the interpolation
weight between an image pair. When α is 0, we have the ERM
principle. The objective in Eqn. (4) is empirically estimated
by minimizing the following mixed loss function:

min
θ
Lmix(D; θ) =

1

M

M∑
i=1

`(F(x̃i; θ), ỹi),

ỹi =gmix(yp, yq, λ),

x̃i =gmix(xp, xq, λ),

(5)

where (xp, yp) and (xq, yq) are vectors drawn from the N
training samples randomly, and λ ∈ [0, 1]. M indicates the
number of mixed samples generated from the original samples.

IV. SELF-REWEIGHTING FROM CLASS CENTROIDS

A. Overview of SRCC

We design a self-reweighting strategy from class centroids
for our training images. Notably, we intend to leverage more
reliable information to generate a sample weight. Compared
to individual samples, the class centers are statistically more
stable to noise labels. Using the class centroids to generate the
sample weight and confidence score, we are able to explore
the relationship between the given sample and all the other
training data rather than treating it as a single data point.
The framework of our self-reweighting from class centroids
is shown in Figure 2.

Although MixUp performs well on many tasks, the er-
roneous supervision caused by noise labels will limit the
effectiveness. For example, if two samples (x1, y1) and
(x2, y2) come from the same distribution containing false
annotations, the ground-truth label for the mixed input x̃1 =
gmix(x1, x2, λ) does not correspond to gmix(y1, y2, λ). When
the ground-truth labels of interpolated samples are inconsistent
with the mixed ones, known as the manifold intrusion, a model
will be trained with incorrect supervision signals. As shown in
Figure 3, a mixed data point generated by two samples from
two diagonal classes has a high probability of lying outside
the original diagonal classes. These mixed inputs will degrade
the model performance when a model is trained with MixUp.
To solve this issue, we also assign a sample weight to every
mixed data during training. The self-reweighting objective is
thus formulated as,

min
θ

Lsr(D; θ) =
M∑
i=1

v(x̃i)`(F(x̃i; θ), ỹi),

s.t.

M∑
i=1

v(x̃i) =1,

(6)

where x̃i and ỹi indicate the mixed data and label as described
in Eqn. (5), and v(x̃i) denotes the sample weight of x̃i. The

JOURNAL OF TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

Feature
Extractor

FC

Original Images

Mixed Images

Original Feature Set
Class Centroids

Similarity
Match

Prediction

Random mix

Network

Mixed Feature Set

...

...

...

...

Sample Weights

...
update

update

Fig. 2: Framework of our self-reweighting from class centroids (SRCC). We use solid and dash lines to denote the forward
and update operations. At each training step, we first extract features and calculate the class centroids for input images (the
upper part of the figure). Then we randomly mix two images by linearly interpolating two original images. The weight of the
mixed data is evaluated by the similarity between its feature and all class centroids. The reweighted losses are used to update
the network. The class centroids and the network are iteratively updated to learn feature representations and classify images.

higher v(x̃i) means that the mixed label is more reliable and
closer to the ground-truth one. Otherwise, the mixed inputs
are deemed as noise samples.

Since interpolating mixed labels are often inaccurate as seen
in Figure 3, our SRCC measures the quality of mixed inputs
to avoid assigning high weights to mixed ones with incorrect
labels. Note that mixed data are used to train the network
parameters and original images are exploited to produce mixed
data as well as class centroids.

B. Sample Weight Generation

To obtain the sample weight for each mixed data, we
first calculate the feature centroid of each class and then
compute the confidence score for each mixed data. Here, we
use ResNet architecture [37] as the classifier network F(θ).
The features from the penultimate layer (i.e., the last fully-
connected layer before the classification layer) are used as our
deep features, denoted by G(xi). Therefore, the relationship
between F(xi; θ) and G(xi) is F(xi; θ) = f(G(xi)), where
f is a fully-connected layer followed by a softmax operation
for classification. For each mixed example x̃i, its feature is
denoted as G(x̃i). We use Qc to represent the feature of the
center of cth class. The similarity between the mixed input
and the cth class centroid is defined as:

Sc(x̃i) =
eG(x̃i)

TQc∑K
k=1 e

G(x̃i)TQk

, (7)

where Sc(x̃i) denotes the similarity between the mixed data
x̃i and the class centroid Qc, and K is the total class number.

Then, we use normalized similarity scores with respect to
all classes to measure mixed input confidence. As a mixed
example is generated from examples from any two classes,
we use q(x̃i) = gmix(Sy1(x̃i), Sy2(x̃i), λ) to denote the
confidence of a mixed input. To ensure that the sum of all

the sample weights is equal to one, we normalize sample
confidence as our sample weight,

v(x̃i) =
q(x̃i)∑M

m=1(q(x̃m))
. (8)

To further reduce the impact of corrupted mixed inputs, we
set the weight of the most unreliable sample to zero. This is
achieved by using the normalization as follows:

v
′
(x̃i) =

v(x̃i)− vmin∑M
m=1(v(x̃m)− vmin)

, (9)

where vmin = min
m

v(x̃m) is the minimum confidence score
among all the training examples. By doing this, we alleviate
the impact of the most unreliable mixed data and enlarge the
range of sample weights. In other words, the reliable samples
are assigned with higher weights.

Compared to the individual sample based weight genera-
tion methods [13], [3], our confidence is more robust since
the similarities between the sampled data and all the class
centroids provide a more comprehensive manner to measure
the position of the sample in the feature space. As illustrated
in the second row of Figure 3, a training loss might be small
for a mixed sample interpolated from two data points in the
categories 1 (orange) and 2 (green) when their data labels
are mislabeled as category 3 (red). In this case, the network
would classify this sample into the category 3 (red zone)
and produces a small loss. Previous methods will assign a
large sample weight for the mixed data point. Thus, the noisy
samples would deviate the optimization process and degrade
classification performance. In contrast, our method correlates
the sample weight of one mixed example with all training
samples via the class centroids. Although the loss for a single
data might be small, the calculated distance between the mixed
sample (interpolated from category 1 and 2) and the class
centroid of category 3 will be larger than the distance between

JOURNAL OF TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

C
le

an
3 2 1 0 1 2

2

1

0

1

2

3 0
1
2
3
4

3 2 1 0 1 2

2

1

0

1

2

3 0
1
2
3
4

3 2 1 0 1 2

2

1

0

1

2

3 0
1
2
3
4

3 2 1 0 1 2

2

1

0

1

2

3 0
1
2
3
4

N
oi

se

3 2 1 0 1 2

2

1

0

1

2

3 0
1
2
3
4

(a) CE

3 2 1 0 1 2

2

1

0

1

2

3 0
1
2
3
4

(b) Reweight

3 2 1 0 1 2

2

1

0

1

2

3 0
1
2
3
4

(c) MixUp

3 2 1 0 1 2

2

1

0

1

2

3 0
1
2
3
4

(d) SRCC

Fig. 3: A toy experiment on synthetic data illustrates the effectiveness of our SRCC on regularizing the decision boundaries.
The clean data (the first row) are generated from five Gaussian distributions with different means and standard deviations. The
noisy data (the second row) are generated by randomly changing labels of examples in the clean data. The decision boundaries
are displayed by Mlxtend [43].

the sample and the class centroid of category 2 (green) or the
category 4 (purple). Thus, the computed confidence of the
mixed data will be small. We thus assign a small weight to
the mixed data to avoid the distraction in optimization.

C. Class Centroid Update

The weight of the mixed input is generated by similarities
between the mixed feature and all class centroids. If the
learned centroid of one class is close to its ground-truth feature
center, the similarity measurement is of high confidence to
reflect the label correctness of the given samples. For the
original sample xi, we first extract the feature representation
G(xi). Suppose we have a model with parameters D and
training samples N . In a fully-connected network, it takes at
least DN arithmetic operations to update the class centroids
once. As it requires about BD (B denotes the batch size,
B << N) arithmetic operations to update parameters one
time, updating class centroids using all training samples will
consume massive computational resources in each iteration.

We instead propose a momentum based scheme to update
class centroids through batch samples. Specifically, at the tth

iteration, we first calculate the sample weight vt(xi) for the
original data xi according to Eqn. (7). We then update the
class centroids as follows:

Qtc = (1− ξ)Qt−1c + ξ

B∑
i=1

vt(xi) · Gt(xi) · Ic(yi), (10)

where t indicates the iteration step and ξ is set to the learning
rate to control the momentum. Ic is an indicator function. It
outputs 1 when the cth position in the one-hot encoding label
yi is also 1. Otherwise, the indicator function outputs 0. It only
takes BD arithmetic operations to update the class centroids
in one iteration, which is the same as the computational cost
in a model forward process.

Algorithm 1 Self-Reweighting from Class Centroids

1: Input: Dataset D, Initiated parameters θ0, Initialted cen-
ters Q0, mixed parameter α.

2: for t = 1 : num iterations do
3: Sample (xi, yi)

B
i=1 from D.

4: Extract features {Gt(xi)}B from original samples.
5: Update class centroids using Eqn. (10).
6: Sample another B examples (xi, yi)

B
i=1 from D.

7: Calculate mixed samples {(x̃i, ỹi)}Bi=1.
8: Extract features {Gt(x̃i)}Bi=1 for mixed inputs.
9: Calculate weights {vt(x̃i)}Bi=1 for mixed samples.

10: Update model parameters using Eqn. (6).
11: end for

After obtaining the updated class centroids Qt, we sample
another batch of the original data to generate mixed images.
Since the network may overly trusts the mixed inputs if
they are produced from the same data used for updating
the centroids, we resample another batch data to avoid this
phenomenon. Then, we extract the features of the mixed
samples G(x̃i) as well as calculate the sample weights vt(x̃i)
to measure the training loss. Finally, the loss is backpropagated
to update our model parameters.

D. Analysis of SRCC

In this section, we analyze the effectiveness of our proposed
method. For illustration, we consider a binary classification
case and use the features {G(xi)}Ni=1 from the last layer. We
use yi = {0, 1} to denote the label of xi. Let Q0 and Q1 be
the centroids for negative and positive sets, respectively. All
samples are split into the positive set P = {xi|yi = 1} and the
negative set N = {xi|yi = 0} based on the noisy labels. The
samples in the noise set S are falsely annotated. Let wt and

JOURNAL OF TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

w∗ be the model parameters in the tth step and the optimal
parameter. For each sample in the noise set, we have

|yi − σ(w∗TG(xi))| ≈ 1,∀xi ∈ S, (11)

where σ(·) is the sigmoid function. Let ŷti = σ(wtTG(xi)) be
the predicted label in the tth iteration. Here, the model with
the optimal parameter w∗ is able to output the clean labels
for falsely annotated samples.

For simplicity, we use `i to denote the loss of sample xi. The
loss based sample reweighting methods fail to learn optimal
parameter in the following theorem.

Theorem 1: Suppose that vi = 1 − ε holds when `i < ε
(ε > 0 and ε2 ≈ 0) in the loss sample reweighting algorithms.
At the tth iteration, if |yi − ŷti | = εi and εi

1−εi < ε for every
ŷti , and

∑P
εiG(xi)−

∑N
εjG(xj) = ~0, the model parameter

wt will not converge to w∗ after iterations.
It indicates that losses of noise samples will not be rectified

if a model overfits the training samples. In contrast, our
proposed method can still update wt to approach w∗ in the
following theorem.

Theorem 2: If ∃S ′ ⊆ S , the condition QTyiG(xi) <

QT1−yiG(xi) satisfies for every xi in S ′
. For the rest of xi,

(Q1 − Q0 − wt)TG(xi) = 0. The model parameter wt will
converge to w∗ after iterations.
The proofs of the theorems are provided in the Appendix.

E. Training Details

Algorithm 1 illustrates that our model parameters θ and
class centroids Q are updated alternatingly in each iteration.
We first sample B original examples from the dataset D and
extract their features to update the class centroids. In the
first few iterations, we assign all original samples with the
same weight when updating class centroids since the initial
network is not discriminative enough at first. Afterwards, we
update class centroids by adopting our proposed reweighting
mechanism and momentum based update strategy as indicated
in Eqn. (10). We then use the updated class centroids to
obtain sample weights of mixed inputs. The mixed inputs are
generated from the original images with a mixing coefficient
λ which is randomly sampled from a beta distribution parame-
terized by α. The weights of mixed inputs are determined and
normalized by Eqn. (7) and Eqn. (8). We update the model
parameters θ by minimizing the objective in Eqn. (6).

V. EXPERIMENTS

In this section, we first describe the datasets and implemen-
tation details in the experiment setting. We then evaluate our
model on the image recognition datasets and compare with the
state-of-the-art algorithms.

A. Experimental Setup

1) Datasets: We testify the effectiveness of our proposed
model on two benchmark datasets: CIFAR-10 and CIFAR-
100 [44], consisting of color images of 32 × 32 pixels
arranged in 10 and 100 classes, respectively. There are 50,000

1 2 3 4 5

1
2

3
4

5

0.6 0.1 0.1 0.1 0.1

0.1 0.6 0.1 0.1 0.1

0.1 0.1 0.6 0.1 0.1

0.1 0.1 0.1 0.6 0.1

0.1 0.1 0.1 0.1 0.6

(a) Symmetric

1 2 3 4 5

1
2

3
4

5

0.6 0.4 0 0 0

0 0.6 0.4 0 0

0 0 0.6 0.4 0

0 0 0 0.6 0.4

0.4 0 0 0 0.6

(b) Asymetric

Fig. 4: Transition matrices of different noise types at 40%
noise rate (using 5 classes as an example).

training and 10,000 test images in both datasets. We then eval-
uate our method on a larger dataset Tiny-ImagNet [45] which
contains a training set of 100,000 images and a validation
set of 10,000 images. These images are collected from 200
different classes of objects in ImageNet [1], and images are
downsampled from the original resolution 256x256 pixels to
64x64 pixels. Instead of selecting a few clean examples as
metadata to guide the learning process [3], [13], we use all
the training images without using any priors of clean data.
We also conduct experiments on Clothing1M [46], which is a
large-scale dataset with real-world noisy labels and consists of
1M training images collected from online shopping websites.

2) Noise Setting: We test two types of label noise following
the setting in [47]. Symmetric noisy labels (Figure 4a) are
produced by replacing a certain proportion of the labels of
one class with other class labels uniformly [47]. In addition,
we follow the setting in [3] to generate asymmetric noisy
data (Figure 4b), where labels are changed to another class
in a pre-defined portion. As shown in the Fig. 4, we adopt
different transitional matrices to produce noisy data of differ-
ent noise types. We also set the noise rate to different levels
following [24], [48] to measure the model robustness.

3) Implementation Details: We adopt various neural net-
works as the base classifiers for CIFAR-10 and CIFAR-
100 datasets. ResNet32 [37], Preact-ResNet18 [49], Mo-
bileNet [50] and WRN28-10 [51] are selected as our backbone
networks in our experiments. We train all the models by
stochastic gradient descent (SGD) with the batch size of 128
and set the initial learning rate to 0.1 with momentum 0.9
following [17]. The learning rate decreases by 10 at the 50
epoch and 60 epoch, and models are trained for 70 epochs.
For the Clothing1M dataset, we follow the previous work [3]
and use ResNet-50 with ImageNet pre-trained weights. Note
that we fix the number of mixed training samples M in every
training epoch. The model obtains poor performance if M is
set to a small value. When M is large, it requires a longer
time to train a model for one epoch. In our experiments, we
set the number of mixed samples M to the number of original
training samples for the sake of implementation efficiency and
model performance. The default mixing parameter α is set to
1.0. We also analyze the effect of α in Sec. VI C. We run
all the experiments on the Nvidia RTX-2080Ti card. For all
the compared methods, we use the optimal hyperparameters
reported in their original papers.

JOURNAL OF TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

TABLE I: Comparisons with different state-of-the-art methods on CIFAR10 and CIFAR100. Mean and standard deviation of
Top-1 Accuracy are reported. The relative degradation between the noise and clean cases is also reported in the parentheses.
The best and second best results are marked in red and blue respectively.

Dataset Methods Clean
Symmetric Noise Asymmetric Noise

Noise Rate Noise Rate
0.2 0.4 0.6 0.2 0.4

CIFAR10

CE 92.89±0.32 76.83(16.06)±2.30 70.77(22.12)±2.31 63.21(29.68)±4.22 79.24(13.65)±1.33 69.92(22.97)±1.97
Forward [45] 91.85±0.15 87.83(4.12)±0.32 84.19(7.66)±0.21 78.92(12.93)±0.29 89.29(2.56)±0.50 82.32(9.53)±0.70
Coteach [46] 92.19±0.12 90.69(1.50)±0.12 85.30(6.89)±0.29 78.21(13.98)±2.58 82.22(9.97)±0.93 79.00(13.19)±1.27
Meta-WeightNet [4] 92.04±0.15 89.19(2.85)±0.57 86.10(5.94)±0.18 81.31(10.73)±0.37 90.33(1.71)±0.61 87.57(4.47)±0.23
GCE [27] 90.03±0.30 88.51(1.52)±0.37 85.48(4.55)±0.16 81.29(8.74)±0.23 88.55(1.48)±0.22 83.31(6.72)±0.14
SL [28] 89.31±0.29 88.38(0.93)±0.29 86.00(3.31)±0.23 81.19(8.12)±0.40 88.41(0.90)±0.28 82.87(6.44)±0.65
Bi-Tempered [29] 90.11±0.23 88.51(1.60)±0.31 84.93(5.18)±0.67 77.82(12.29)±0.79 88.23(1.88)±0.23 82.43(7.68)±0.23
SRCC 92.41±0.17 90.52(1.89)±0.13 87.43(4.98)±0.42 81.59(10.82)±0.41 91.09(1.32)±0.25 87.89(4.52)±0.52

CIFAR100

CE 70.50±0.12 50.8(19.64)6±0.27 43.01(27.49)±1.16 34.43(36.07)±0.94 52.36(18.14)±0.17 41.23(29.27)±1.26
Forward [45] 68.52±0.36 61.27(7.24)±0.40 55.69(12.83)±0.32 45.15(23.37)±1.88 65.04(3.48)±7.71 46.77(21.75)±0.51
Coteach [46] 65.09±0.19 62.48(2.61)±0.28 53.88(11.21)±0.29 40.94(24.15)±0.87 57.55(7.54)±0.25 49.23(15.86)±0.78
Meta-WeightNet [4] 69.13±0.33 64.22(5.09)±0.28 58.64(10.67)±0.47 47.43(21.58)±0.76 64.22(5.09)±0.28 55.25(14.06)±0.47
GCE [27] 67.39±0.12 63.97(3.42)±0.43 58.33(9.06)±0.35 41.73(25.66)±0.36 62.07(5.32)±0.41 53.29(14.10)±0.09
SL [28] 62.82±1.44 60.74(2.08)±1.27 58.04(4.78)±1.79 46.77(16.05)±2.43 61.49(1.33)±0.85 51.21(11.61)±0.49
Bi-Tempered [29] 67.90±0.27 64.95(2.95)±0.22 59.83(8.07)±0.46 50.73(17.17)±0.50 61.25(6.65)±0.33 46.26(21.64)±0.36
SRCC 69.31±1.16 65.76(3.55)±0.36 60.62(8.69)±0.68 49.23(20.08)±1.49 65.98(3.33)±0.50 54.86(14.45)±0.64

TABLE II: Comparisons with different state-of-the-art meth-
ods in terms of test accuracy (%) on Tiny-ImageNet.

Methods Clean
Symmetric Asymmetric
Noise Rate Noise Rate

0.2 0.4 0.6 0.2 0.4
CE 58.59 44.39 37.14 31.19 47.01 34.06
Forward [52] 58.52 46.51 37.16 29.72 48.16 34.51
Coteach [47] 55.23 46.93 42.17 21.53 50.71 39.06
Meta-WeightNet [3] 57.55 51.33 46.68 39.91 51.23 37.72
GCE [23] 57.13 49.16 46.02 40.73 47.93 39.43
SL [24] 56.45 53.09 49.68 41.24 53.16 36.67
Bi-Tempered [25] 58.04 53.49 46.44 35.11 49.36 39.25
SRCC 59.77 54.24 50.64 41.56 54.45 40.91

B. Comparisons with the State-of-the-art

We compare our methods with different state-of-art meth-
ods. For fair comparisons on CIFAR10 and CIFAR100,
ResNet32 is adopted as the base classifier by all the methods.
For the Tiny-ImagnetNet dataset, we use Preact-ResNet18 as
the base classifier for all the methods. The CE denotes the
model utilizes the cross-entropy loss to train the networks on
noisy data. Forward [52] corrects the prediction by a label
transition matrix. Coteach [47] adopts two models and an
exchange loss for robust training. Meta-WeightNet [3] uses a
simple network to learn a weighting function in a data-driven
fashion, representing the state-of-the-art sample weighting
methods. GCE [23] introduces a generalized cross-entropy loss
for training deep neural networks with noisy labels. SL [24]
employs an asymmetric cross-entropy loss for robust learning
with noisy labels. Bi-Tempered [25] introduces a robust bi-
tempered logistic loss for training models with noisy labels.

As shown in Table I, our proposed SRCC in general
achieves the highest test accuracy. Bi-Tempered performs well
for symmetric noisy datasets but fails to handle asymmetric
noise. Although the results of Meta-WeigthNet for different
noisy types are stable, it requires extra clean data to calibrate
the sample weights during training. As Meta-WeigthNet re-
quires to feed forward both training and validation data, and
propagate gradients backwards three times, it takes at least
several times computational resources of baseline to update the

network. In our SRCC, we only need extra forward operations
to update the class centroids. We also summarize the average
running time of a training epoch on CIFAR10. For one epoch,
training the baseline, our SRCC and Meta-WeightNet on av-
erage cost 10.72s, 17.73s, and 81.27s, respectively. Therefore,
Meta-WeightNet performs much slower than our approach
during training.

For all compared methods, they either adopt different loss
functions (such as Bi-temp [29]) or introduce sample weights
(such as Meta-WeightNet [4]). The supervision signals of
these methods are thus different from the standard CE loss.
In practice, noise levels of training data are unknown to the
compared algorithms. Therefore, we do not assume that the
clean data are known in advance. Even though all samples
are clean, the compared algorithms may also recognize them
as noise ones, thus leading to the performance degeneration.
Following the work [29], we also report top-1 accuracy of
different methods in the noise-free case. As suggested, we
report the relative degradation in Table I. Our method is
comparable to the baseline in the noise-free case but our model
is agnostic against the noise degrees of data. This implies that
our proposed model identifies the clean samples accurately.

Furthermore, we also report the classification performance
of different methods on Tiny-ImageNet in Table II. Our
proposed SRCC not only achieves the best classification
accuracy when there is no noise in the training data, but
also outperforms all the other methods when the training data
contain different types of noisy examples.

To verify the effectiveness of the proposed method on real-
world data, we further conduct experiments on Clothing1M.
The results of other methods are reported from original pa-
pers. Table III shows the test accuracy of different methods.
As expected, our proposed method achieves the highest test
accuracy on this dataset.

C. Model Evaluation

1) Regularization on Decision Boundaries: We conduct
experiments on synthetic noise samples to demonstrate the

JOURNAL OF TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

TABLE III: Comparisons with state-of-the-art methods in
terms of test accuracy (%) on Clothing1M.

Method CE Forward [52] SL [24] Meta-WeightNet [3] SRCC
Accuracy 69.21 69.84 71.02 73.72 73.99

TABLE IV: Classification accuracy on synthetic noisy data.
Instances are sampled from the same distribution for five seeds.

Methods seed 1 seed 2 seed 3 seed 4 seed 5
CE 89.67 91.83 89.33 89.67 91.50
Reweight 95.33 97.00 95.67 96.67 97.17
MixUp 97.33 97.33 98.33 98.00 97.33
SRCC 98.33 99.00 98.66 98.83 99.00

Sy
m

m
et

ri
c

0.
2

0 20 40 60
Epoch

20

40

60

80

Te
st

 A
cc

ur
ac

y

CE
MixUp
SRCC

0 20 40 60
Epoch

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

CE
MixUp
SRCC

Sy
m

m
et

ri
c

0.
4

0 20 40 60
Epoch

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

CE
MixUp
SRCC

0 20 40 60
Epoch

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y

CE
MixUp
SRCC

Sy
m

m
et

ri
c

0.
6

0 20 40 60
Epoch

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y

CE
MixUp
SRCC

(a) CIFAR10

0 20 40 60
Epoch

0

10

20

30

40

50

Te
st

 A
cc

ur
ac

y

CE
MixUp
SRCC

(b) CIFAR100

Fig. 5: Test accuracy vs. the number of epochs for SRCC and
the compared methods.

effectiveness of our proposed SRCC on regularizing the de-
cision boundaries. The training samples are generated from
five Gaussian distributions centred at five 2D points as shown
in Figure 3. There are in total 600 samples in the training
set. We random flip labels of 40 examples to other classes
to generate noisy data. Test samples are generated from the
same distribution. We use a network with 2 hidden layers as
the base classifier for all the methods. All the methods are
trained with the batch size 64 for 200 epochs. In Figure 3, the
decision boundaries of the compared methods are visualized
by the Mlxtend tool [43]. As illustrated in Figure 3, our
proposed SRCC better regularizes the decision boundaries of
the network on both clean and noisy data. As a consequence,
our SRCC outperforms the other methods on the classification
accuracy, as indicated in Table IV.

2) Robustness wrt. Noise Rates and Architectures: To
demonstrate the robustness of our proposed method, we inves-
tigate the performance of our method with respect to different

0 50 100 150 200 250 300
Epoch

20
30
40
50
60
70
80
90

Te
st

 A
cc

ur
ac

y

CE
MixUp
SRCC

(a) Symmetric 0.2

0 50 100 150 200 250 300
Epoch

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y

CE
MixUp
SRCC

(b) Symmetric 0.6

Fig. 6: Test accuracy vs. the number of epochs for SRCC and
the compared methods trained with the fixed learning rate.

backbones and noise rates. We conduct experiments on the
CIFAR10, and each experiment is repeated five times using
different random seeds. The mean and standard deviation of
the top-1 error rate are reported. In particular, we compare our
SRCC with the MixUp method [17] in the following settings:
(1) The noisy data are generated with symmetric noise, where
the noise rates are set to 0.2, 0.4 and 0.6 respectively. (2)
Different classifier architectures, i.e., MobileNet [50], Preact-
ResNet18 [49] and Wide ResNet [51], are adopted.

Table V indicates that different base classifiers armed with
our SRCC algorithm achieve the lowest classification errors.
Additionally, the error rates of Wide-ResNet28 are lower than
those of Preact-ResNet18 and MobileNet. This indicates that a
stronger base classifier also improves the model performance.
All the classifiers trained with our SRCC achieve lower error
rates than those trained with MixUp on both datasets in
different noise rates. This manifests that the models trained
with SRCC obtain better robustness against noisy data, demon-
strating the superiority of our SRCC.

3) Generalization Ability Analysis: To analyze the test
accuracy behaviours of different losses during training, we
plot the test accuracy in every iteration in Figure 5. Preact-
ResNet18 is adopted as the base classifier for different meth-
ods. For the models trained with the CE loss, the performance
decreases dramatically after reaching the highest test accuracy.
This phenomenon indicates that the noise samples provide er-
roneous supervision in training, leading to inferior predictions
for the test samples. Compared with the MixUp, our model
achieves better performance on both CIFAR10 and CIFAR100.

To further investigate the causes of performance degrada-
tion, we conduct extra experiments on CIFAR10 with different
symmetric noise rates. Instead of decaying the learning rate,
we train all models for 300 epochs with the same learning
rate 0.1. As shown in Figure 6, the performance of compared
methods (e.g., CE and MixUP) still decreases even if the learn-
ing rate is not decayed. This indicates that the performance
degradation is caused by the fact that the noise examples
provide false supervision and the compared methods cannot
suppress these erroneous signals during training. The per-
formance degradation becomes more severe when compared
models are trained on data containing more noise samples.
This shows that the performance of CE and MixUp is easily
affected by noise samples, especially when there are many
noise samples in the training data. Compared to these methods,
the performance of our SRCC is stable, demonstrating the

JOURNAL OF TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

TABLE V: Classification errors on CIFAR10 and CIFAR100 in different noise rates. Mean and standard deviation are reported.

Model Methods
CIFAR10 CIFAR100

Symmetric Noise Rate Symmetric Noise Rate
0.2 0.4 0.6 0.2 0.4 0.6

MobileNet
CE 13.53±0.41 18.03±0.28 25.69±0.67 47.95±0.90 55.10±0.22 66.66±0.93
MixUp 12.90±0.16 16.40±0.57 23.24±0.41 38.30±0.69 47.14±0.77 60.84±0.80
SRCC 12.02±0.12 16.11±0.54 22.44±0.69 35.14±0.39 40.76±0.29 54.35±0.49

Preact-ResNet18
CE 16.60±0.40 18.56±2.05 25.16±0.55 40.28±0.53 48.85±0.96 58.97±1.14
MixUp 9.86±0.36 15.54±0.40 22.81±0.71 35.15±0.80 44.86±0.78 54.50±0.68
SRCC 8.50±0.92 12.02±0.45 19.26±1.20 30.48±0.72 38.29±0.45 49.02±1.60

Wide-ResNet28
CE 14.53±0.42 17.40±0.37 25.38±0.35 35.00±0.58 45.80±0.93 56.73±0.97
MixUp 8.83±0.46 13.69±0.48 18.98±1.61 28.80±0.55 37.45±0.81 45.65±0.17
SRCC 7.37±0.36 11.55±0.97 17.81±0.79 27.35±0.21 33.64±0.39 41.77±0.81

TABLE VI: Classification errors on CIFAR10 for different
hyper-parameter values α.

Methods Noise Rate
0.2 0.4

MixUp (α = 0.2) 11.13±0.38 16.43±0.72
MixUp (α = 0.5) 11.82±4.23 15.85±0.82
MixUp (α = 1.0) 10.22±0.62 15.25±0.41
SRCC (α = 0.2) 9.35±0.32 13.38±0.34
SRCC (α = 0.5) 8.64±0.49 11.81±0.23
SRCC (α = 1.0) 8.70±0.78 11.52±0.27

TABLE VII: Effects of reweighting strategies on CIFAR10
and CIFAR100.

Dataset Methods Noise Rate
0.2 0.4 0.6

CIFAR10

CE 83.40±0.40 81.44±2.05 74.84±0.55
Reweight 88.41±0.56 85.79±1.19 75.41±2.58
MixUp 90.14±0.36 84.46±0.40 77.19±0.71
SRCC (Lc) 91.22±1.09 87.71±0.62 80.55±1.15
SRCC (Lrc + v1) 91.28±1.28 87.59±0.61 80.81±0.67
SRCC (Lrc + v2) 91.50±0.92 87.98±0.45 80.74±1.20

CIFAR100

CE 59.72±0.53 51.15±0.96 41.03±1.14
Reweight 59.55±0.55 53.11±0.21 42.51±0.58
MixUp 64.85±0.80 55.14±0.78 45.50±0.68
SRCC (Lc) 67.80±0.14 58.72±0.86 48.65±0.61
SRCC (Lrc + v1) 67.88±0.33 59.12±0.84 50.38±0.84
SRCC (Lrc + v2) 69.52±0.72 61.71±0.45 50.98±1.60

robustness and superiority of our proposed algorithm.
4) Sensitivity of Hyper-parameter α: We evaluate the sen-

sitivity of MixUp and SRCC with respect to different mixing
coefficients controlled by α. The test error rates on CIFAR10
are reported in Table VI. Each model is run three times in this
experiment. It can be seen that our SRCC is less sensitive to
the hyper-parameter than MixUp. When α is set to 0.5, the
performance variance of MixUp is much higher than ours. It
implies that our proposed method is more robust to different
parameters than MixUP.

5) Effectiveness of Class Centroids: To study the effects of
reweighting strategies for updating class centroids, we carry
out experiments on CIFAR10 and CIFAR100 in different noise
rates. We report test accuracy in Table VII. Lrc and Lc
denote the class centroids with or without reweigthing original
images. v1 and v2 denote that the weights of mixed inputs are
normalized by Eqn. (8) and Eqn. (9) respectively. It shows that
the models with reweighting outperform those with MixUp
on both CIFAR10 and CIFAR100. Furthermore, we observe
that a model updating class centroids with weighted features
outperforms the one updating class centroids with the mean of
sample features. This also demonstrates that our SRCC is able

TABLE VIII: Overall test accuracy of models with different
centroids update strategies on CIFAR10.

Methods Noise Rate
0.2 0.4 0.6

Identical sampling 91.02±1.71 87.35±0.67 79.04±2.52
Offline 92.75±0.46 88.70±0.89 79.62±2.64
SRCC 91.50±0.92 87.98±0.45 80.74±1.20

to recognize reliable data when updating the class centroids.
6) Effects of Class Centroid Update Schema: We further

investigate the effects of different centroids update strategies
on the model performance. As shown in Table VIII, we adopt
three ways to update class centroids. The “Identical sampling”
denotes the model using same batch samples to produce mixed
inputs and update class centroids. The “Offline” represents the
model updating class centroids using all training samples after
a training epoch. It is observed that the model that samples
another batch of images for generating mixed inputs (i.e., our
SRCC) indeed outperforms the “Identical Sampling” model.

VI. CONCLUSION

In this paper, we proposed a novel reweighting method,
dubbed self-reweighting from class centroids (SRCC), for
learning with noisy labels. Our method exploits the class
centers to measure the reliability of data labels in computing
the objective function, thus being more robust to corrupted
labels. Furthermore, we also reweight class centroids to re-
move the noisy data in an online fashion. By doing so, we
significantly reduce the computational cost while maintaining
the effectiveness of the training process. The effectiveness of
our proposed method is analyzed to show the advantage of our
proposed method. Extensive experiments demonstrate that our
SRCC achieves superior performance compared to the state-
of-the-art on noisy data.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[3] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng, “Meta-
weight-net: Learning an explicit mapping for sample weighting,” in
Advances in Neural Information Processing Systems, 2019, pp. 1917–
1928.

JOURNAL OF TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

[4] J. Liang, L. Jiang, D. Meng, and A. G. Hauptmann, “Learning to detect
concepts from webly-labeled video data.” in IJCAI, 2016, pp. 1746–
1752.

[5] B. Zhuang, L. Liu, Y. Li, C. Shen, and I. Reid, “Attend in groups:
a weakly-supervised deep learning framework for learning from web
data,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 1878–1887.

[6] D. Li, C. Rodriguez, X. Yu, and H. Li, “Word-level deep sign lan-
guage recognition from video: A new large-scale dataset and methods
comparison,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2020, pp. 1459–1469.

[7] W. Bi, L. Wang, J. T. Kwok, and Z. Tu, “Learning to predict from
crowdsourced data.” in UAI, 2014, pp. 82–91.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[9] F. Ma, L. Zhu, Y. Yang, S. Zha, G. Kundu, M. Feiszli, and Z. Shou,
“Sf-net: Single-frame supervision for temporal action localization,”
in Computer Vision – ECCV 2020. Cham: Springer International
Publishing, 2020, pp. 420–437.

[10] R. Wang, T. Liu, and D. Tao, “Multiclass learning with partially
corrupted labels,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 6, pp. 2568–2580, 2018.

[11] B. Han, I. W. Tsang, L. Chen, J. T. Zhou, and C. P. Yu, “Beyond majority
voting: A coarse-to-fine label filtration for heavily noisy labels,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 30, no. 12,
pp. 3774–3787, 2019.

[12] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni,
and L. Moy, “Learning from crowds,” Journal of Machine Learning
Research, vol. 11, no. Apr, pp. 1297–1322, 2010.

[13] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight
examples for robust deep learning,” arXiv preprint arXiv:1803.09050,
2018.

[14] M. Fang, T. Zhou, J. Yin, Y. Wang, and D. Tao, “Data subset selection
with imperfect multiple labels,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 30, no. 7, pp. 2212–2221, 2019.

[15] B. Han, I. W. Tsang, L. Chen, C. P. Yu, and S. Fung, “Progressive
stochastic learning for noisy labels,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 29, no. 10, pp. 5136–5148, 2018.

[16] F. Ma, D. Meng, Q. Xie, Z. Li, and X. Dong, “Self-paced co-training,” in
Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, 2017, pp. 2275–2284.

[17] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[18] N. Manwani and P. Sastry, “Noise tolerance under risk minimization,”
IEEE transactions on cybernetics, vol. 43, no. 3, pp. 1146–1151, 2013.

[19] T. Liu and D. Tao, “Classification with noisy labels by importance
reweighting,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 38, no. 3, pp. 447–461, 2015.

[20] A. Menon, B. Van Rooyen, C. S. Ong, and B. Williamson, “Learning
from corrupted binary labels via class-probability estimation,” in Inter-
national Conference on Machine Learning, 2015, pp. 125–134.

[21] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari, “Learn-
ing with noisy labels,” in Advances in neural information processing
systems, 2013, pp. 1196–1204.

[22] Y. Lyu and I. W. Tsang, “Curriculum loss: Robust learning
and generalization against label corruption,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=rkgt0REKwS

[23] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training
deep neural networks with noisy labels,” in Advances in neural infor-
mation processing systems, 2018, pp. 8778–8788.

[24] Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, and J. Bailey, “Symmetric cross
entropy for robust learning with noisy labels,” in Proceedings of IEEE
International Conference on Computer Vision, 2019, pp. 322–330.

[25] E. Amid, M. K. Warmuth, R. Anil, and T. Koren, “Robust bi-tempered
logistic loss based on bregman divergences,” in Advances in Neural
Information Processing Systems, 2019, pp. 14 987–14 996.

[26] Y. Xu, P. Cao, Y. Kong, and Y. Wang, “L dmi: An information-theoretic
noise-robust loss function,” arXiv preprint arXiv:1909.03388, 2019.

[27] X. Yu, Y. Tian, F. Porikli, R. Hartley, H. Li, H. Heijnen, and V. Balntas,
“Unsupervised extraction of local image descriptors via relative distance
ranking loss,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV) Workshops, Oct 2019.

[28] L. Jiang, D. Meng, T. Mitamura, and A. G. Hauptmann, “Easy samples
first: Self-paced reranking for zero-example multimedia search,” in

Proceedings of the 22nd ACM international conference on Multimedia,
2014, pp. 547–556.

[29] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, “Mentornet:
Learning data-driven curriculum for very deep neural networks on
corrupted labels,” arXiv preprint arXiv:1712.05055, 2017.

[30] Y. Wu, Y. Lin, X. Dong, Y. Yan, W. Bian, and Y. Yang, “Progressive
learning for person re-identification with one example,” IEEE Transac-
tions on Image Processing, vol. 28, no. 6, pp. 2872–2881, June 2019.

[31] G. Kennedy, Z. Zhuang, X. Yu, and R. Mahony, “Iterative optimi-
sation with an innovation cnn for pose refinement,” arXiv preprint
arXiv:2101.08895, 2021.

[32] D. Meng, Q. Zhao, and L. Jiang, “A theoretical understanding of self-
paced learning,” Information Sciences, vol. 414, pp. 319–328, 2017.

[33] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proceedings of 34th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, D. Precup and Y. W. Teh, Eds., vol. 70. International
Convention Centre, Sydney, Australia: PMLR, 06–11 Aug 2017, pp.
1126–1135.

[34] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing
data augmentation,” arXiv preprint arXiv:1708.04896, 2017.

[35] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaug-
ment: Learning augmentation strategies from data,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2019,
pp. 113–123.

[36] Y. Wu and Y. Yang, “Exploring heterogeneous clues for weakly-
supervised audio-visual video parsing,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2021.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[38] T. DeVries and G. W. Taylor, “Improved regularization of convolutional
neural networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[39] H. Guo, Y. Mao, and R. Zhang, “Mixup as locally linear out-of-manifold
regularization,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, 2019, pp. 3714–3722.

[40] V. Verma, A. Lamb, C. Beckham, A. Courville, I. Mitliagkis, and
Y. Bengio, “Manifold mixup: Encouraging meaningful on-manifold
interpolation as a regularizer,” stat, vol. 1050, p. 13, 2018.

[41] M. P. Kumar, B. Packer, and D. Koller, “Self-paced learning for
latent variable models,” in Advances in Neural Information Processing
Systems, 2010, pp. 1189–1197.

[42] F. Ma, D. Meng, X. Dong, and Y. Yang, “Self-paced multi-view
co-training,” Journal of Machine Learning Research, vol. 21, no. 57, pp.
1–38, 2020. [Online]. Available: http://jmlr.org/papers/v21/18-794.html

[43] S. Raschka, “Mlxtend: Providing machine learning and data science
utilities and extensions to python’s scientific computing stack,” The
Journal of Open Source Software, vol. 3, no. 24, Apr. 2018. [Online].
Available: http://joss.theoj.org/papers/10.21105/joss.00638

[44] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[45] L. Yao and J. Miller, “Tiny imagenet classification with convolutional
neural networks,” CS 231N, vol. 2, no. 5, p. 8, 2015.

[46] T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang, “Learning from
massive noisy labeled data for image classification,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015,
pp. 2691–2699.

[47] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and
M. Sugiyama, “Co-teaching: Robust training of deep neural networks
with extremely noisy labels,” in Advances in neural information pro-
cessing systems, 2018, pp. 8527–8537.

[48] J. Shu, Q. Zhao, K. Chen, Z. Xu, and D. Meng, “Learning adaptive loss
for robust learning with noisy labels,” arXiv preprint arXiv:2002.06482,
2020.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in European conference on computer vision. Springer, 2016,
pp. 630–645.

[50] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[51] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[52] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu, “Making
deep neural networks robust to label noise: A loss correction approach,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 1944–1952.

